Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366753617> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4366753617 endingPage "e1109" @default.
- W4366753617 startingPage "e1089" @default.
- W4366753617 abstract "Glioblastoma (GBM) is the most common brain tumor in the United States, with an annual incidence rate of 3.21 per 100,000. It is the most aggressive type of diffuse glioma and has a median survival of months after treatment. This study aims to assess the accuracy of different novel deep learning models trained on a set of simple clinical, demographic, and surgical variables to assist in clinical practice, even in areas with constrained health care infrastructure. Our study included 37,095 patients with GBM from the SEER (Surveillance Epidemiology and End Results) database. All predictors were based on demographic, clinicopathologic, and treatment information of the cases. Our outcomes of interest were months of survival and vital status. Concordance index (C-index) and integrated Brier scores (IBS) were used to evaluate the performance of the models. The patient characteristics and the statistical analyses were consistent with the epidemiologic literature. The models C-index and IBS ranged from 0.6743 to 0.6918 and from 0.0934 to 0.1034, respectively. Probabilistic matrix factorization (0.6918), multitask logistic regression (0.6916), and logistic hazard (0.6916) had the highest C-index scores. The models with the lowest IBS were the probabilistic matrix factorization (0.0934), multitask logistic regression (0.0935), and logistic hazard (0.0936). These models had an accuracy (1-IBS) of 90.66%; 90.65%, and 90.64%, respectively. The deep learning algorithms were deployed on an interactive Web-based tool for practical use available via https://glioblastoma-survanalysis.herokuapp.com/. Novel deep learning algorithms can better predict GBM prognosis than do baseline methods and can lead to more personalized patient care regardless of extensive electronic health record availability." @default.
- W4366753617 created "2023-04-24" @default.
- W4366753617 creator A5015854512 @default.
- W4366753617 creator A5029294194 @default.
- W4366753617 creator A5030704684 @default.
- W4366753617 creator A5032743422 @default.
- W4366753617 creator A5048151016 @default.
- W4366753617 creator A5082091821 @default.
- W4366753617 creator A5091765017 @default.
- W4366753617 date "2023-07-01" @default.
- W4366753617 modified "2023-10-16" @default.
- W4366753617 title "Deep Learning Approaches for Glioblastoma Prognosis in Resource-Limited Settings: A Study Using Basic Patient Demographic, Clinical, and Surgical Inputs" @default.
- W4366753617 cites W1986546598 @default.
- W4366753617 cites W2003438982 @default.
- W4366753617 cites W2004655916 @default.
- W4366753617 cites W2044076969 @default.
- W4366753617 cites W2044619726 @default.
- W4366753617 cites W2051201630 @default.
- W4366753617 cites W2111547563 @default.
- W4366753617 cites W2130373985 @default.
- W4366753617 cites W2141630574 @default.
- W4366753617 cites W2162880502 @default.
- W4366753617 cites W2321732490 @default.
- W4366753617 cites W2346127361 @default.
- W4366753617 cites W2406035656 @default.
- W4366753617 cites W2526011086 @default.
- W4366753617 cites W2803348431 @default.
- W4366753617 cites W2898037167 @default.
- W4366753617 cites W2954173681 @default.
- W4366753617 cites W2954277215 @default.
- W4366753617 cites W2968858819 @default.
- W4366753617 cites W3027080857 @default.
- W4366753617 cites W3081397225 @default.
- W4366753617 cites W3109993872 @default.
- W4366753617 cites W3134908283 @default.
- W4366753617 cites W3137522294 @default.
- W4366753617 cites W3161255535 @default.
- W4366753617 cites W3187035773 @default.
- W4366753617 cites W3215408688 @default.
- W4366753617 cites W4234865248 @default.
- W4366753617 cites W780541738 @default.
- W4366753617 doi "https://doi.org/10.1016/j.wneu.2023.04.072" @default.
- W4366753617 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37088416" @default.
- W4366753617 hasPublicationYear "2023" @default.
- W4366753617 type Work @default.
- W4366753617 citedByCount "0" @default.
- W4366753617 crossrefType "journal-article" @default.
- W4366753617 hasAuthorship W4366753617A5015854512 @default.
- W4366753617 hasAuthorship W4366753617A5029294194 @default.
- W4366753617 hasAuthorship W4366753617A5030704684 @default.
- W4366753617 hasAuthorship W4366753617A5032743422 @default.
- W4366753617 hasAuthorship W4366753617A5048151016 @default.
- W4366753617 hasAuthorship W4366753617A5082091821 @default.
- W4366753617 hasAuthorship W4366753617A5091765017 @default.
- W4366753617 hasConcept C119857082 @default.
- W4366753617 hasConcept C126322002 @default.
- W4366753617 hasConcept C151956035 @default.
- W4366753617 hasConcept C154945302 @default.
- W4366753617 hasConcept C160798450 @default.
- W4366753617 hasConcept C35405484 @default.
- W4366753617 hasConcept C41008148 @default.
- W4366753617 hasConcept C71924100 @default.
- W4366753617 hasConceptScore W4366753617C119857082 @default.
- W4366753617 hasConceptScore W4366753617C126322002 @default.
- W4366753617 hasConceptScore W4366753617C151956035 @default.
- W4366753617 hasConceptScore W4366753617C154945302 @default.
- W4366753617 hasConceptScore W4366753617C160798450 @default.
- W4366753617 hasConceptScore W4366753617C35405484 @default.
- W4366753617 hasConceptScore W4366753617C41008148 @default.
- W4366753617 hasConceptScore W4366753617C71924100 @default.
- W4366753617 hasLocation W43667536171 @default.
- W4366753617 hasLocation W43667536172 @default.
- W4366753617 hasOpenAccess W4366753617 @default.
- W4366753617 hasPrimaryLocation W43667536171 @default.
- W4366753617 hasRelatedWork W2961085424 @default.
- W4366753617 hasRelatedWork W2996309850 @default.
- W4366753617 hasRelatedWork W3046775127 @default.
- W4366753617 hasRelatedWork W3107602296 @default.
- W4366753617 hasRelatedWork W3170094116 @default.
- W4366753617 hasRelatedWork W3205747317 @default.
- W4366753617 hasRelatedWork W3209574120 @default.
- W4366753617 hasRelatedWork W4306674287 @default.
- W4366753617 hasRelatedWork W4312192474 @default.
- W4366753617 hasRelatedWork W4386462264 @default.
- W4366753617 hasVolume "175" @default.
- W4366753617 isParatext "false" @default.
- W4366753617 isRetracted "false" @default.
- W4366753617 workType "article" @default.