Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366758152> ?p ?o ?g. }
- W4366758152 endingPage "20827" @default.
- W4366758152 startingPage "20797" @default.
- W4366758152 abstract "Abstract A prediscretisation of numerical attributes which is required by some rule learning algorithms is a source of inefficiencies. This paper describes new rule tuning steps that aim to recover lost information in the discretisation and new pruning techniques that may further reduce the size of rule models and improve their accuracy. The proposed QCBA method was initially developed to postprocess quantitative attributes in models generated by Classification based on associations (CBA) algorithm, but it can also be applied to the results of other rule learning approaches. We demonstrate the effectiveness on the postprocessing of models generated by five association rule classification algorithms (CBA, CMAR, CPAR, IDS, SBRL) and two first-order logic rule learners (FOIL2 and PRM). Benchmarks on 22 datasets from the UCI repository show smaller size and the overall best predictive performance for FOIL2+QCBA compared to all seven baselines. Postoptimised CBA models have a better predictive performance compared to the state-of-the-art rule learner CORELS in this benchmark. The article contains an ablation study for the individual postprocessing steps and a scalability analysis on the KDD’99 Anomaly detection dataset." @default.
- W4366758152 created "2023-04-24" @default.
- W4366758152 creator A5008712376 @default.
- W4366758152 creator A5058530878 @default.
- W4366758152 date "2023-04-22" @default.
- W4366758152 modified "2023-09-27" @default.
- W4366758152 title "QCBA: improving rule classifiers learned from quantitative data by recovering information lost by discretisation" @default.
- W4366758152 cites W1074954902 @default.
- W4366758152 cites W1480376833 @default.
- W4366758152 cites W1494581921 @default.
- W4366758152 cites W1531743498 @default.
- W4366758152 cites W1561017199 @default.
- W4366758152 cites W1578151950 @default.
- W4366758152 cites W1623342295 @default.
- W4366758152 cites W1670263352 @default.
- W4366758152 cites W1671614046 @default.
- W4366758152 cites W1763691006 @default.
- W4366758152 cites W1833977909 @default.
- W4366758152 cites W1977496278 @default.
- W4366758152 cites W2010891403 @default.
- W4366758152 cites W2018111893 @default.
- W4366758152 cites W2023837808 @default.
- W4366758152 cites W2053381548 @default.
- W4366758152 cites W2076063813 @default.
- W4366758152 cites W2099404336 @default.
- W4366758152 cites W2107933135 @default.
- W4366758152 cites W2109269232 @default.
- W4366758152 cites W2109562042 @default.
- W4366758152 cites W2115482638 @default.
- W4366758152 cites W2125802815 @default.
- W4366758152 cites W2126592066 @default.
- W4366758152 cites W2140460921 @default.
- W4366758152 cites W2162475186 @default.
- W4366758152 cites W2164400088 @default.
- W4366758152 cites W2170909252 @default.
- W4366758152 cites W220382040 @default.
- W4366758152 cites W2238902321 @default.
- W4366758152 cites W2367397349 @default.
- W4366758152 cites W2488527103 @default.
- W4366758152 cites W2518509308 @default.
- W4366758152 cites W2548945102 @default.
- W4366758152 cites W2748915876 @default.
- W4366758152 cites W2787894218 @default.
- W4366758152 cites W2802083715 @default.
- W4366758152 cites W2804381347 @default.
- W4366758152 cites W2805504678 @default.
- W4366758152 cites W2914584367 @default.
- W4366758152 cites W2945976633 @default.
- W4366758152 cites W2997133340 @default.
- W4366758152 cites W2998574808 @default.
- W4366758152 cites W3053613968 @default.
- W4366758152 cites W3121562452 @default.
- W4366758152 cites W3130153679 @default.
- W4366758152 cites W3199802723 @default.
- W4366758152 cites W4214900601 @default.
- W4366758152 doi "https://doi.org/10.1007/s10489-022-04370-x" @default.
- W4366758152 hasPublicationYear "2023" @default.
- W4366758152 type Work @default.
- W4366758152 citedByCount "0" @default.
- W4366758152 crossrefType "journal-article" @default.
- W4366758152 hasAuthorship W4366758152A5008712376 @default.
- W4366758152 hasAuthorship W4366758152A5058530878 @default.
- W4366758152 hasBestOaLocation W43667581521 @default.
- W4366758152 hasConcept C108010975 @default.
- W4366758152 hasConcept C119857082 @default.
- W4366758152 hasConcept C124101348 @default.
- W4366758152 hasConcept C13280743 @default.
- W4366758152 hasConcept C134306372 @default.
- W4366758152 hasConcept C149271511 @default.
- W4366758152 hasConcept C154945302 @default.
- W4366758152 hasConcept C185798385 @default.
- W4366758152 hasConcept C193524817 @default.
- W4366758152 hasConcept C205649164 @default.
- W4366758152 hasConcept C33923547 @default.
- W4366758152 hasConcept C41008148 @default.
- W4366758152 hasConcept C48044578 @default.
- W4366758152 hasConcept C6557445 @default.
- W4366758152 hasConcept C73000952 @default.
- W4366758152 hasConcept C77088390 @default.
- W4366758152 hasConcept C86803240 @default.
- W4366758152 hasConceptScore W4366758152C108010975 @default.
- W4366758152 hasConceptScore W4366758152C119857082 @default.
- W4366758152 hasConceptScore W4366758152C124101348 @default.
- W4366758152 hasConceptScore W4366758152C13280743 @default.
- W4366758152 hasConceptScore W4366758152C134306372 @default.
- W4366758152 hasConceptScore W4366758152C149271511 @default.
- W4366758152 hasConceptScore W4366758152C154945302 @default.
- W4366758152 hasConceptScore W4366758152C185798385 @default.
- W4366758152 hasConceptScore W4366758152C193524817 @default.
- W4366758152 hasConceptScore W4366758152C205649164 @default.
- W4366758152 hasConceptScore W4366758152C33923547 @default.
- W4366758152 hasConceptScore W4366758152C41008148 @default.
- W4366758152 hasConceptScore W4366758152C48044578 @default.
- W4366758152 hasConceptScore W4366758152C6557445 @default.
- W4366758152 hasConceptScore W4366758152C73000952 @default.
- W4366758152 hasConceptScore W4366758152C77088390 @default.
- W4366758152 hasConceptScore W4366758152C86803240 @default.
- W4366758152 hasFunder F4320324253 @default.