Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366758833> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4366758833 abstract "One of the major significant problems in the existing techniques in Wireless Sensor Networks (WSNs) is Energy Efficiency (EE) because sensor nodes are battery-powered devices. The energy-efficient data transmission and routing to the sink are critical challenges because WSNs have inherent resource limitations. On the other hand, the clustering process is a crucial strategy that can rapidly increase network lifetime. As a result, WSNs require an energy-efficient routing strategy with optimum route election. These issues are overcome by using Tasmanian Fully Recurrent Deep Learning Network with Pelican Variable Marine Predators Algorithm for Data Aggregation and Cluster-Based Routing in WSN (TFR-DLN-PMPOA-WSN) which is proposed to expand the network lifetime. Initially, Tasmanian Fully Recurrent Deep Learning Network (TFR-DLN) is proposed to elect the Optimal Cluster Head (OCH). After OCH selection, the three parameters, trust, connectivity, and QoS, are optimized for secure routing with the help of the Pelican Variable Marine Predators Optimization Algorithm (PMPOA). Finally, the proposed method finds the minimum distance among the nodes and selects the best routing to increase energy efficiency. The proposed approach will be activated in MATLAB. The efficacy of the TFR-DLN- PMPOA-WSN approach is assessed in terms of several performances. It achieves higher throughput, higher packet delivery ratio, higher detection rate, lower delay, lower energy utilization, and higher network lifespan than the existing methods." @default.
- W4366758833 created "2023-04-24" @default.
- W4366758833 creator A5068680555 @default.
- W4366758833 creator A5077725860 @default.
- W4366758833 date "2023-04-21" @default.
- W4366758833 modified "2023-09-27" @default.
- W4366758833 title "Energy-Efficient Data Aggregation and Cluster-Based Routing in Wireless Sensor Networks Using Tasmanian Fully Recurrent Deep Learning Network with Pelican Variable Marine Predators Algorithm" @default.
- W4366758833 cites W2903925216 @default.
- W4366758833 cites W3003259380 @default.
- W4366758833 cites W3011104345 @default.
- W4366758833 cites W3036962952 @default.
- W4366758833 cites W3047078447 @default.
- W4366758833 cites W3121794515 @default.
- W4366758833 cites W3135206661 @default.
- W4366758833 cites W3153331706 @default.
- W4366758833 cites W3170999884 @default.
- W4366758833 cites W3194535035 @default.
- W4366758833 cites W3195466385 @default.
- W4366758833 cites W3198231723 @default.
- W4366758833 cites W3213663564 @default.
- W4366758833 cites W3215664119 @default.
- W4366758833 cites W4206088785 @default.
- W4366758833 cites W4206918024 @default.
- W4366758833 cites W4210256856 @default.
- W4366758833 cites W4213076869 @default.
- W4366758833 cites W4213364920 @default.
- W4366758833 cites W4220709096 @default.
- W4366758833 cites W4220894864 @default.
- W4366758833 cites W4220966162 @default.
- W4366758833 cites W4225983066 @default.
- W4366758833 cites W4226031261 @default.
- W4366758833 cites W4283837850 @default.
- W4366758833 cites W4289527924 @default.
- W4366758833 cites W4294904587 @default.
- W4366758833 cites W4306931317 @default.
- W4366758833 doi "https://doi.org/10.1142/s0219265923500056" @default.
- W4366758833 hasPublicationYear "2023" @default.
- W4366758833 type Work @default.
- W4366758833 citedByCount "2" @default.
- W4366758833 countsByYear W43667588332023 @default.
- W4366758833 crossrefType "journal-article" @default.
- W4366758833 hasAuthorship W4366758833A5068680555 @default.
- W4366758833 hasAuthorship W4366758833A5077725860 @default.
- W4366758833 hasConcept C104954878 @default.
- W4366758833 hasConcept C120314980 @default.
- W4366758833 hasConcept C154945302 @default.
- W4366758833 hasConcept C18903297 @default.
- W4366758833 hasConcept C24590314 @default.
- W4366758833 hasConcept C2742236 @default.
- W4366758833 hasConcept C31258907 @default.
- W4366758833 hasConcept C41008148 @default.
- W4366758833 hasConcept C73555534 @default.
- W4366758833 hasConcept C74172769 @default.
- W4366758833 hasConcept C86803240 @default.
- W4366758833 hasConceptScore W4366758833C104954878 @default.
- W4366758833 hasConceptScore W4366758833C120314980 @default.
- W4366758833 hasConceptScore W4366758833C154945302 @default.
- W4366758833 hasConceptScore W4366758833C18903297 @default.
- W4366758833 hasConceptScore W4366758833C24590314 @default.
- W4366758833 hasConceptScore W4366758833C2742236 @default.
- W4366758833 hasConceptScore W4366758833C31258907 @default.
- W4366758833 hasConceptScore W4366758833C41008148 @default.
- W4366758833 hasConceptScore W4366758833C73555534 @default.
- W4366758833 hasConceptScore W4366758833C74172769 @default.
- W4366758833 hasConceptScore W4366758833C86803240 @default.
- W4366758833 hasIssue "04" @default.
- W4366758833 hasLocation W43667588331 @default.
- W4366758833 hasOpenAccess W4366758833 @default.
- W4366758833 hasPrimaryLocation W43667588331 @default.
- W4366758833 hasRelatedWork W2051887495 @default.
- W4366758833 hasRelatedWork W2100501341 @default.
- W4366758833 hasRelatedWork W2103461883 @default.
- W4366758833 hasRelatedWork W2110346299 @default.
- W4366758833 hasRelatedWork W2119285602 @default.
- W4366758833 hasRelatedWork W2155864758 @default.
- W4366758833 hasRelatedWork W2533451858 @default.
- W4366758833 hasRelatedWork W2548262476 @default.
- W4366758833 hasRelatedWork W2904180469 @default.
- W4366758833 hasRelatedWork W3006677684 @default.
- W4366758833 hasVolume "23" @default.
- W4366758833 isParatext "false" @default.
- W4366758833 isRetracted "false" @default.
- W4366758833 workType "article" @default.