Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366758995> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4366758995 endingPage "419" @default.
- W4366758995 startingPage "393" @default.
- W4366758995 abstract "AbstractWe propose two novel bandwidth selection procedures for the nonparametric regression model with classical measurement error in the regressors. Each method evaluates the prediction errors of the regression using a second (density) deconvolution. The first approach uses a typical leave-one-out cross-validation criterion, while the second applies a bootstrap approach and the concept of out-of-bag prediction. We show the asymptotic validity of both procedures and compare them to the SIMEX method in a Monte Carlo study. As well as dramatically reducing computational cost, the methods proposed in this article lead to lower mean integrated squared error (MISE) compared to the current state-of-the-art.Keywords: Measurement error modelsdeconvolutionnonparametric regressionbandwidth selectionJEL Classification: C14 AcknowledgmentsThe authors acknowledge financial supports from the SMU Dedman College Research Fund (12-412268) (Dong) and the Aarhus University Research Fund (AUFF-26852) (Taylor).Disclosure statementNo potential conflict of interest was reported by the authors.Notes1 Delaigle et al. (Citation2015) and Kato and Sasaki (Citation2019) also provide methods (closely related to Delaigle and Hall, Citation2008) for bandwidth selection in this model; however, these methods are designed to ensure the validity of confidence bands rather than optimizing the estimation of m.2 Note that we only consider global bandwidth selection; the choice of a local bandwidth which changes over the range of the regressor is beyond the scope of this paper. For local bandwidth choice, one may extend the conventional approach to minimize an estimate of the (approximate) MSE E[{m̂(x;h)−m(x)}2] for a given x. It would also be interesting to see if recent developments in coverage-error optimal bandwidths (Calonico et al., Citation2018, Citation2020) could be extended to the nonparametric deconvolution context.3 It is interesting to note that our deconvolution approach to estimate R(h) in Equation(4)(4) R(h)=E[∬{y−m̂(x;h)}2fYX(y,x)dydx],(4) may be applied to other estimation methods to construct m̂(x;h), where the meaning of the tuning parameter h changes. For example, Davezies and Barbanchon (Citation2017) and Bartalotti et al. (Citation2020) proposed nonparametric regression estimators in the context of regression discontinuity designs, where auxiliary data are available. Although they allow nonclassical measurement errors, it would be interesting to see if our approach could be adapted to suggest bandwidth selectors for their estimators under the classical measurement error setting.4 For the error-free case, Wong (Citation1983) considered the average squared error loss n−1∑j=1n{m̂(Xj;h)−m(Xj)}2 as the criterion to select the bandwidth. Since X is unobservable in our contaminated case, it is natural to consider the integrated squared error loss Rn(h).5 Results for the known measurement error case and the unknown case with X from a Laplace distribution were qualitatively similar.Additional informationFundingThis work was financially supported by the SMU Dedman College Research Fund (12-412268) (Dong) and the Aarhus University Research Fund (AUFF-26852) (Taylor)." @default.
- W4366758995 created "2023-04-24" @default.
- W4366758995 creator A5013384564 @default.
- W4366758995 creator A5037660946 @default.
- W4366758995 creator A5049853792 @default.
- W4366758995 date "2023-04-21" @default.
- W4366758995 modified "2023-10-04" @default.
- W4366758995 title "Bandwidth selection for nonparametric regression with errors-in-variables" @default.
- W4366758995 cites W1483469716 @default.
- W4366758995 cites W1964261100 @default.
- W4366758995 cites W1969946615 @default.
- W4366758995 cites W1975677447 @default.
- W4366758995 cites W1984450750 @default.
- W4366758995 cites W2001335634 @default.
- W4366758995 cites W2024983310 @default.
- W4366758995 cites W2036082400 @default.
- W4366758995 cites W2043452208 @default.
- W4366758995 cites W2048075564 @default.
- W4366758995 cites W2049542278 @default.
- W4366758995 cites W2066298604 @default.
- W4366758995 cites W2067994512 @default.
- W4366758995 cites W2084559629 @default.
- W4366758995 cites W2122518581 @default.
- W4366758995 cites W2130950870 @default.
- W4366758995 cites W2155723942 @default.
- W4366758995 cites W2165146299 @default.
- W4366758995 cites W2169351483 @default.
- W4366758995 cites W2248407839 @default.
- W4366758995 cites W2541714257 @default.
- W4366758995 cites W2803115946 @default.
- W4366758995 cites W2911964244 @default.
- W4366758995 cites W2950845368 @default.
- W4366758995 cites W2963501726 @default.
- W4366758995 cites W2963521048 @default.
- W4366758995 cites W2969560137 @default.
- W4366758995 cites W3098893030 @default.
- W4366758995 cites W3122950080 @default.
- W4366758995 cites W3169540601 @default.
- W4366758995 cites W366592016 @default.
- W4366758995 cites W4289709426 @default.
- W4366758995 cites W4302338619 @default.
- W4366758995 cites W620844590 @default.
- W4366758995 doi "https://doi.org/10.1080/07474938.2023.2191105" @default.
- W4366758995 hasPublicationYear "2023" @default.
- W4366758995 type Work @default.
- W4366758995 citedByCount "0" @default.
- W4366758995 crossrefType "journal-article" @default.
- W4366758995 hasAuthorship W4366758995A5013384564 @default.
- W4366758995 hasAuthorship W4366758995A5037660946 @default.
- W4366758995 hasAuthorship W4366758995A5049853792 @default.
- W4366758995 hasConcept C102366305 @default.
- W4366758995 hasConcept C105795698 @default.
- W4366758995 hasConcept C11413529 @default.
- W4366758995 hasConcept C139945424 @default.
- W4366758995 hasConcept C149782125 @default.
- W4366758995 hasConcept C19499675 @default.
- W4366758995 hasConcept C2776257435 @default.
- W4366758995 hasConcept C33923547 @default.
- W4366758995 hasConcept C41008148 @default.
- W4366758995 hasConcept C74127309 @default.
- W4366758995 hasConcept C76155785 @default.
- W4366758995 hasConcept C83546350 @default.
- W4366758995 hasConceptScore W4366758995C102366305 @default.
- W4366758995 hasConceptScore W4366758995C105795698 @default.
- W4366758995 hasConceptScore W4366758995C11413529 @default.
- W4366758995 hasConceptScore W4366758995C139945424 @default.
- W4366758995 hasConceptScore W4366758995C149782125 @default.
- W4366758995 hasConceptScore W4366758995C19499675 @default.
- W4366758995 hasConceptScore W4366758995C2776257435 @default.
- W4366758995 hasConceptScore W4366758995C33923547 @default.
- W4366758995 hasConceptScore W4366758995C41008148 @default.
- W4366758995 hasConceptScore W4366758995C74127309 @default.
- W4366758995 hasConceptScore W4366758995C76155785 @default.
- W4366758995 hasConceptScore W4366758995C83546350 @default.
- W4366758995 hasIssue "4" @default.
- W4366758995 hasLocation W43667589951 @default.
- W4366758995 hasOpenAccess W4366758995 @default.
- W4366758995 hasPrimaryLocation W43667589951 @default.
- W4366758995 hasRelatedWork W2088954041 @default.
- W4366758995 hasRelatedWork W2119239665 @default.
- W4366758995 hasRelatedWork W2170349014 @default.
- W4366758995 hasRelatedWork W2464909151 @default.
- W4366758995 hasRelatedWork W2856533860 @default.
- W4366758995 hasRelatedWork W2918677219 @default.
- W4366758995 hasRelatedWork W3122759421 @default.
- W4366758995 hasRelatedWork W3124798672 @default.
- W4366758995 hasRelatedWork W3125873104 @default.
- W4366758995 hasRelatedWork W2483837169 @default.
- W4366758995 hasVolume "42" @default.
- W4366758995 isParatext "false" @default.
- W4366758995 isRetracted "false" @default.
- W4366758995 workType "article" @default.