Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366764080> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4366764080 endingPage "103309" @default.
- W4366764080 startingPage "103309" @default.
- W4366764080 abstract "Timely extraction of high-quality photovoltaic (PV) panels from high-resolution remote sensing imagery can contribute to a comprehensive understanding of energy production, and supports global carbon neutrality and Sustainable Development Goals (SDGs). Existing studies for extracting PV panels only focus on small-scale rooftop PV systems but not on large-scale PV systems composed of single or several PV panels or arrays. Furthermore, the currently available public datasets related to large-scale PV systems are limited by the coarse resolution of the imagery used or annotation scale and do not provide highly detailed footprints for PV panels or attributes such as the location, quantity, or area of these panels. To fill this gap, a novel semantic segmentation model (PVNet) for extracting high-quality PV panels from the densely distributed and regularly shaped PV panels in large-scale PV systems is proposed. PVNet consists of two modules, a Coarse Prediction Module (CPM) and a Fine Optimization Module (FOM). The CPM extracts complete regions of individual PV panels by fusing low-level local features with high-level global features, while the FOM optimizes the output of CPM by residual refinement to match extracted boundaries to ground truth. High-quality details from region to boundary of PV panels are obtained through joint supervision of CPM and FOM results. PVNet was trained on a newly annotated PV Panel Dataset and tested under four scenario conditions in China where the large-scale PV industry is growing rapidly. Qualitative and quantitative results show that PVNet can achieve the highest accuracy for PV panel extraction with F1socre higher than 0.88 and IoU higher than 0.79. Area-wide PV panel mapping and comparisons with existing PV footprint datasets demonstrate that PVNet is a feasible solution for obtaining high-quality geo-spatial databases of large-scale PV systems." @default.
- W4366764080 created "2023-04-24" @default.
- W4366764080 creator A5001081733 @default.
- W4366764080 creator A5016657120 @default.
- W4366764080 creator A5052272301 @default.
- W4366764080 creator A5062069492 @default.
- W4366764080 creator A5068147366 @default.
- W4366764080 creator A5085043351 @default.
- W4366764080 date "2023-05-01" @default.
- W4366764080 modified "2023-09-24" @default.
- W4366764080 title "PVNet: A novel semantic segmentation model for extracting high-quality photovoltaic panels in large-scale systems from high-resolution remote sensing imagery" @default.
- W4366764080 cites W2394812591 @default.
- W4366764080 cites W2469734051 @default.
- W4366764080 cites W2494424066 @default.
- W4366764080 cites W2581746499 @default.
- W4366764080 cites W2800384134 @default.
- W4366764080 cites W2904145953 @default.
- W4366764080 cites W2916798096 @default.
- W4366764080 cites W2941705808 @default.
- W4366764080 cites W2963881378 @default.
- W4366764080 cites W3015281913 @default.
- W4366764080 cites W3099036542 @default.
- W4366764080 cites W3100617290 @default.
- W4366764080 cites W3183287963 @default.
- W4366764080 cites W3195155596 @default.
- W4366764080 cites W3208854778 @default.
- W4366764080 cites W4200336467 @default.
- W4366764080 cites W4220769658 @default.
- W4366764080 cites W4221141776 @default.
- W4366764080 cites W4281738517 @default.
- W4366764080 cites W4291950387 @default.
- W4366764080 cites W4292093001 @default.
- W4366764080 cites W4293661149 @default.
- W4366764080 cites W4308995507 @default.
- W4366764080 doi "https://doi.org/10.1016/j.jag.2023.103309" @default.
- W4366764080 hasPublicationYear "2023" @default.
- W4366764080 type Work @default.
- W4366764080 citedByCount "0" @default.
- W4366764080 crossrefType "journal-article" @default.
- W4366764080 hasAuthorship W4366764080A5001081733 @default.
- W4366764080 hasAuthorship W4366764080A5016657120 @default.
- W4366764080 hasAuthorship W4366764080A5052272301 @default.
- W4366764080 hasAuthorship W4366764080A5062069492 @default.
- W4366764080 hasAuthorship W4366764080A5068147366 @default.
- W4366764080 hasAuthorship W4366764080A5085043351 @default.
- W4366764080 hasBestOaLocation W43667640801 @default.
- W4366764080 hasConcept C119599485 @default.
- W4366764080 hasConcept C124101348 @default.
- W4366764080 hasConcept C127413603 @default.
- W4366764080 hasConcept C154945302 @default.
- W4366764080 hasConcept C205649164 @default.
- W4366764080 hasConcept C2778755073 @default.
- W4366764080 hasConcept C41008148 @default.
- W4366764080 hasConcept C41291067 @default.
- W4366764080 hasConcept C58640448 @default.
- W4366764080 hasConcept C62649853 @default.
- W4366764080 hasConcept C89600930 @default.
- W4366764080 hasConceptScore W4366764080C119599485 @default.
- W4366764080 hasConceptScore W4366764080C124101348 @default.
- W4366764080 hasConceptScore W4366764080C127413603 @default.
- W4366764080 hasConceptScore W4366764080C154945302 @default.
- W4366764080 hasConceptScore W4366764080C205649164 @default.
- W4366764080 hasConceptScore W4366764080C2778755073 @default.
- W4366764080 hasConceptScore W4366764080C41008148 @default.
- W4366764080 hasConceptScore W4366764080C41291067 @default.
- W4366764080 hasConceptScore W4366764080C58640448 @default.
- W4366764080 hasConceptScore W4366764080C62649853 @default.
- W4366764080 hasConceptScore W4366764080C89600930 @default.
- W4366764080 hasLocation W43667640801 @default.
- W4366764080 hasOpenAccess W4366764080 @default.
- W4366764080 hasPrimaryLocation W43667640801 @default.
- W4366764080 hasRelatedWork W1974511032 @default.
- W4366764080 hasRelatedWork W2139939267 @default.
- W4366764080 hasRelatedWork W2347219288 @default.
- W4366764080 hasRelatedWork W2347673410 @default.
- W4366764080 hasRelatedWork W2348097614 @default.
- W4366764080 hasRelatedWork W2358941527 @default.
- W4366764080 hasRelatedWork W2387675639 @default.
- W4366764080 hasRelatedWork W2392343732 @default.
- W4366764080 hasRelatedWork W2394327295 @default.
- W4366764080 hasRelatedWork W4360608310 @default.
- W4366764080 hasVolume "119" @default.
- W4366764080 isParatext "false" @default.
- W4366764080 isRetracted "false" @default.
- W4366764080 workType "article" @default.