Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366772722> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4366772722 endingPage "1938" @default.
- W4366772722 startingPage "1938" @default.
- W4366772722 abstract "The various corn diseases that affect agriculture go unnoticed by farmers. Each day, more crops fail due to diseases as there is no effective treatment or a way to identify the illness. Common rust, blight, and the northern leaf grey spot are the most prevalent corn diseases. The presence of a disease cannot be accurately detected by simply looking at the plant. This will lead to improper pesticide use, which harms people by bringing on chronic diseases. Therefore, maintaining food security depends on accurate and automatic disease detection. It might be possible to save time and stop crop degradation before it takes place by utilising digital technologies. Hence, applying modern digital technologies to identify the disease in the damaged corn fields automatically will be more advantageous to the farmers. Many academics have recently become interested in deep learning, which has aided in creating an exact and autonomous picture classification scheme. The use of deep learning techniques and their adjustments for detecting corn illnesses can greatly assist contemporary agriculture. To find plant leaf diseases, we employ image acquisition, preprocessing, and classification processes. Preprocessing includes procedures such as reading images, resizing images, and data augmentation. The suggested project is based on EfficientNet and improves the precision of the database of corn leaf diseases by tweaking the variables. Tests are run using DenseNet and Resnet on the test dataset to confirm the precision and robustness of this approach. The recognition accuracy of 98.85% that can be achieved using this method, according to experimental results, is significantly higher than those of other cutting-edge techniques." @default.
- W4366772722 created "2023-04-25" @default.
- W4366772722 creator A5013158228 @default.
- W4366772722 creator A5022439777 @default.
- W4366772722 creator A5029421192 @default.
- W4366772722 creator A5044856698 @default.
- W4366772722 date "2023-04-20" @default.
- W4366772722 modified "2023-10-17" @default.
- W4366772722 title "Detecting Plant Disease in Corn Leaf Using EfficientNet Architecture—An Analytical Approach" @default.
- W4366772722 cites W2795016359 @default.
- W4366772722 cites W2805772477 @default.
- W4366772722 cites W2922385286 @default.
- W4366772722 cites W2938959907 @default.
- W4366772722 cites W2963163009 @default.
- W4366772722 cites W2989646980 @default.
- W4366772722 cites W3034173830 @default.
- W4366772722 cites W3095722810 @default.
- W4366772722 cites W3158814579 @default.
- W4366772722 cites W4285149115 @default.
- W4366772722 cites W4295419387 @default.
- W4366772722 doi "https://doi.org/10.3390/electronics12081938" @default.
- W4366772722 hasPublicationYear "2023" @default.
- W4366772722 type Work @default.
- W4366772722 citedByCount "2" @default.
- W4366772722 countsByYear W43667727222023 @default.
- W4366772722 crossrefType "journal-article" @default.
- W4366772722 hasAuthorship W4366772722A5013158228 @default.
- W4366772722 hasAuthorship W4366772722A5022439777 @default.
- W4366772722 hasAuthorship W4366772722A5029421192 @default.
- W4366772722 hasAuthorship W4366772722A5044856698 @default.
- W4366772722 hasBestOaLocation W43667727221 @default.
- W4366772722 hasConcept C104317684 @default.
- W4366772722 hasConcept C118518473 @default.
- W4366772722 hasConcept C119857082 @default.
- W4366772722 hasConcept C120217122 @default.
- W4366772722 hasConcept C127413603 @default.
- W4366772722 hasConcept C154945302 @default.
- W4366772722 hasConcept C182076605 @default.
- W4366772722 hasConcept C18903297 @default.
- W4366772722 hasConcept C2780034373 @default.
- W4366772722 hasConcept C34736171 @default.
- W4366772722 hasConcept C41008148 @default.
- W4366772722 hasConcept C55493867 @default.
- W4366772722 hasConcept C63479239 @default.
- W4366772722 hasConcept C6557445 @default.
- W4366772722 hasConcept C86803240 @default.
- W4366772722 hasConcept C88463610 @default.
- W4366772722 hasConceptScore W4366772722C104317684 @default.
- W4366772722 hasConceptScore W4366772722C118518473 @default.
- W4366772722 hasConceptScore W4366772722C119857082 @default.
- W4366772722 hasConceptScore W4366772722C120217122 @default.
- W4366772722 hasConceptScore W4366772722C127413603 @default.
- W4366772722 hasConceptScore W4366772722C154945302 @default.
- W4366772722 hasConceptScore W4366772722C182076605 @default.
- W4366772722 hasConceptScore W4366772722C18903297 @default.
- W4366772722 hasConceptScore W4366772722C2780034373 @default.
- W4366772722 hasConceptScore W4366772722C34736171 @default.
- W4366772722 hasConceptScore W4366772722C41008148 @default.
- W4366772722 hasConceptScore W4366772722C55493867 @default.
- W4366772722 hasConceptScore W4366772722C63479239 @default.
- W4366772722 hasConceptScore W4366772722C6557445 @default.
- W4366772722 hasConceptScore W4366772722C86803240 @default.
- W4366772722 hasConceptScore W4366772722C88463610 @default.
- W4366772722 hasIssue "8" @default.
- W4366772722 hasLocation W43667727221 @default.
- W4366772722 hasOpenAccess W4366772722 @default.
- W4366772722 hasPrimaryLocation W43667727221 @default.
- W4366772722 hasRelatedWork W2353782740 @default.
- W4366772722 hasRelatedWork W2359420993 @default.
- W4366772722 hasRelatedWork W2384726418 @default.
- W4366772722 hasRelatedWork W2810633852 @default.
- W4366772722 hasRelatedWork W2897921899 @default.
- W4366772722 hasRelatedWork W3009975525 @default.
- W4366772722 hasRelatedWork W3019978981 @default.
- W4366772722 hasRelatedWork W4221121366 @default.
- W4366772722 hasRelatedWork W4321608687 @default.
- W4366772722 hasRelatedWork W4324121522 @default.
- W4366772722 hasVolume "12" @default.
- W4366772722 isParatext "false" @default.
- W4366772722 isRetracted "false" @default.
- W4366772722 workType "article" @default.