Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366773352> ?p ?o ?g. }
- W4366773352 abstract "Abstract Accurate forecasting of runoff as an important hydrological variable is a key task for water resources planning and management. Given the importance of this variable, in the current study, a multivariate linear stochastic model (MLSM) is combined with a multilayer nonlinear machine learning model (MNMLM) to generate a hybrid model for the spatial and temporal simulation of runoff in the Quebec basin, Canada. Monthly hydrological data from 2001 to 2013, including precipitation and runoff data from nine stations and Normalized Difference Vegetation Index (NDVI) extraction of MODIS data, are applied as input to the proposed hybrid model. At the first step of the hybrid modeling, data normality and stationary were examined by performing various tests. In the second step, MLSM was developed by defining four different scenarios and as a result 15 sub-scenarios. The first and second scenarios were developed based on one exogenous variable (precipitation or NDVI). In contrast, the second and third scenarios were developed based on two additional variables. In the first and third scenarios, the data are modeled without preprocessing. In the second and fourth scenarios, a preprocessing step is performed on the data. Then, in the third step, various combinations based on different time delays from runoff data were applied for developing nonlinear model. The comparisons are made between observed and simulated time series at various stations and based on the root mean squared error (RMSE), mean absolute error (MAE), correlation coefficient (R) and Akaike information criterion (AIC). The efficiency of the proposed hybrid model is compared with a novel machine learning model that was introduced in 2021 by Sultani et al., and it was also compared with the results obtained from the linear and nonlinear models. In most stations, delays (t-1) and (t-24) are identified as the most effective delays in hybrid and nonlinear modeling of runoff. Also, in most stations, the use of climatic parameters and physiographic factors as exogenous variables along with runoff data improves the results compared to the use of one variable. Results showed that at all stations, proposed hybrid model generally leads to more accurate estimates of runoff compared with various linear and nonlinear models. More accurate estimates of peak runoff values at all stations were another excellence of proposed hybrid model than other models." @default.
- W4366773352 created "2023-04-25" @default.
- W4366773352 creator A5012816591 @default.
- W4366773352 creator A5024069659 @default.
- W4366773352 creator A5068689355 @default.
- W4366773352 date "2023-04-21" @default.
- W4366773352 modified "2023-09-29" @default.
- W4366773352 title "Development of a linear–nonlinear hybrid special model to predict monthly runoff in a catchment area and evaluate its performance with novel machine learning methods" @default.
- W4366773352 cites W1588163064 @default.
- W4366773352 cites W1938057060 @default.
- W4366773352 cites W1983724666 @default.
- W4366773352 cites W1986143844 @default.
- W4366773352 cites W2017554280 @default.
- W4366773352 cites W2046794274 @default.
- W4366773352 cites W2078667481 @default.
- W4366773352 cites W2079615115 @default.
- W4366773352 cites W2089396560 @default.
- W4366773352 cites W2090568397 @default.
- W4366773352 cites W2093230975 @default.
- W4366773352 cites W2097580026 @default.
- W4366773352 cites W2122950676 @default.
- W4366773352 cites W2604433761 @default.
- W4366773352 cites W2694309188 @default.
- W4366773352 cites W2748028097 @default.
- W4366773352 cites W2767745631 @default.
- W4366773352 cites W2890355299 @default.
- W4366773352 cites W2911052303 @default.
- W4366773352 cites W2912155634 @default.
- W4366773352 cites W2931813856 @default.
- W4366773352 cites W2935484715 @default.
- W4366773352 cites W2939529096 @default.
- W4366773352 cites W2950095140 @default.
- W4366773352 cites W2969895489 @default.
- W4366773352 cites W2977816628 @default.
- W4366773352 cites W2985097131 @default.
- W4366773352 cites W2999092792 @default.
- W4366773352 cites W3010535543 @default.
- W4366773352 cites W3013631219 @default.
- W4366773352 cites W3039772469 @default.
- W4366773352 cites W3094173623 @default.
- W4366773352 cites W3094193625 @default.
- W4366773352 cites W3157060160 @default.
- W4366773352 cites W3157227012 @default.
- W4366773352 cites W3162408508 @default.
- W4366773352 cites W3168593366 @default.
- W4366773352 cites W3192618942 @default.
- W4366773352 cites W3206589882 @default.
- W4366773352 cites W3212614252 @default.
- W4366773352 cites W4200413010 @default.
- W4366773352 cites W4210710680 @default.
- W4366773352 cites W4361797242 @default.
- W4366773352 doi "https://doi.org/10.1007/s13201-023-01917-2" @default.
- W4366773352 hasPublicationYear "2023" @default.
- W4366773352 type Work @default.
- W4366773352 citedByCount "1" @default.
- W4366773352 countsByYear W43667733522023 @default.
- W4366773352 crossrefType "journal-article" @default.
- W4366773352 hasAuthorship W4366773352A5012816591 @default.
- W4366773352 hasAuthorship W4366773352A5024069659 @default.
- W4366773352 hasAuthorship W4366773352A5068689355 @default.
- W4366773352 hasBestOaLocation W43667733521 @default.
- W4366773352 hasConcept C105795698 @default.
- W4366773352 hasConcept C124101348 @default.
- W4366773352 hasConcept C126674687 @default.
- W4366773352 hasConcept C132651083 @default.
- W4366773352 hasConcept C139945424 @default.
- W4366773352 hasConcept C1549246 @default.
- W4366773352 hasConcept C18903297 @default.
- W4366773352 hasConcept C33923547 @default.
- W4366773352 hasConcept C41008148 @default.
- W4366773352 hasConcept C50477045 @default.
- W4366773352 hasConcept C86803240 @default.
- W4366773352 hasConceptScore W4366773352C105795698 @default.
- W4366773352 hasConceptScore W4366773352C124101348 @default.
- W4366773352 hasConceptScore W4366773352C126674687 @default.
- W4366773352 hasConceptScore W4366773352C132651083 @default.
- W4366773352 hasConceptScore W4366773352C139945424 @default.
- W4366773352 hasConceptScore W4366773352C1549246 @default.
- W4366773352 hasConceptScore W4366773352C18903297 @default.
- W4366773352 hasConceptScore W4366773352C33923547 @default.
- W4366773352 hasConceptScore W4366773352C41008148 @default.
- W4366773352 hasConceptScore W4366773352C50477045 @default.
- W4366773352 hasConceptScore W4366773352C86803240 @default.
- W4366773352 hasIssue "5" @default.
- W4366773352 hasLocation W43667733521 @default.
- W4366773352 hasOpenAccess W4366773352 @default.
- W4366773352 hasPrimaryLocation W43667733521 @default.
- W4366773352 hasRelatedWork W2030240816 @default.
- W4366773352 hasRelatedWork W2033412785 @default.
- W4366773352 hasRelatedWork W2224945582 @default.
- W4366773352 hasRelatedWork W2985532050 @default.
- W4366773352 hasRelatedWork W3080840844 @default.
- W4366773352 hasRelatedWork W3110289222 @default.
- W4366773352 hasRelatedWork W4313514608 @default.
- W4366773352 hasRelatedWork W4319731084 @default.
- W4366773352 hasRelatedWork W4362522159 @default.
- W4366773352 hasRelatedWork W1120894264 @default.
- W4366773352 hasVolume "13" @default.
- W4366773352 isParatext "false" @default.
- W4366773352 isRetracted "false" @default.