Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366778417> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4366778417 abstract "Abstract Stuck pipe and other related drilling hazards are major causes of non-productive time while drilling. Being able to spot early indications of potential drilling risks manually by analyzing drilling parameters in real-time has been a significant challenge for engineers. However, this task can be successfully executed by modern data analytics tools based on machine learning (ML) technologies. The objective of the presented study is to prove and demonstrate the ability of such machine learning algorithms to process and analyze simultaneously a variety of surface drilling data in real-time in order to: a) detect anomalies, that are in most cases invisible to a human eye; and b) provide early warnings of possible upcoming drilling risks with sufficient time in advance, so that the rig crew can execute the appropriate mitigation actions. The algorithms developed have favorable characteristics, such as adaptiveness to real-time data and agnosticism to well types, BHAs, mud types, lithologies or any other specific well characteristics. This supports out-of-the-box usage, which enables scalability to large numbers of wells. Targeted sub-systems detect the current operation type (tripping, drilling, reaming, etc), and detect symptoms related to differential sticking, hole cleaning issues, mechanical sticking, pack offs, tight holes, obstructions and other risks by analyzing standard surface drilling time logs in real-time, such as hookload, WOB, RPM, bit depth, mud pressure, etc. The ML models and wider risk detection system have been demonstrated to generalize to new wells, and consistently produce high performance across those tested, without any need to pre-train the models on historical data from offset wells. The system connects to WITSML data stores and outputs warnings with specific information regarding the identified symptom of the potential drilling incident, leaving it up to the rig crew or drilling supervisor to decide how to act on those warnings. The system provides drilling engineers with live warnings on average 1.5-4 hours prior to incidents, giving rig crews enough time to react. This also allows drilling engineers to know in advance a specific source of potential risk, which assists in selecting the right strategy for implementing corrective actions. The technology's performance was successfully verified in live operations and post-drill studies on historical data on over 300 wells worldwide during the past 2.5 years, with mean recall and precision metrics of 0.986 ± 0.050 and 0.712 ± 0.181 respectively across historical test wells, and significantly reduced occurrence rates of stuck pipe incidents in both onshore and offshore operations. Real case studies for onshore, offshore, conventional and unconventional assets will be presented and discussed." @default.
- W4366778417 created "2023-04-25" @default.
- W4366778417 creator A5034293672 @default.
- W4366778417 creator A5040902371 @default.
- W4366778417 date "2023-04-24" @default.
- W4366778417 modified "2023-10-11" @default.
- W4366778417 title "Leveraging Targeted Machine Learning for Early Warning and Prevention of Stuck Pipe, Tight Holes, Pack Offs, Hole Cleaning Issues and Other Potential Drilling Hazards" @default.
- W4366778417 cites W2087385753 @default.
- W4366778417 cites W2932706296 @default.
- W4366778417 cites W3007866572 @default.
- W4366778417 cites W3011343706 @default.
- W4366778417 cites W3091347587 @default.
- W4366778417 cites W3108649269 @default.
- W4366778417 cites W3112619285 @default.
- W4366778417 cites W3137983464 @default.
- W4366778417 cites W3138584584 @default.
- W4366778417 cites W3139104333 @default.
- W4366778417 cites W3139361604 @default.
- W4366778417 cites W3163302436 @default.
- W4366778417 cites W3167643675 @default.
- W4366778417 cites W3202867795 @default.
- W4366778417 cites W4200276832 @default.
- W4366778417 cites W4205576982 @default.
- W4366778417 cites W4206010163 @default.
- W4366778417 cites W4212926574 @default.
- W4366778417 cites W4214759992 @default.
- W4366778417 cites W4220772690 @default.
- W4366778417 cites W4229375964 @default.
- W4366778417 cites W4281391540 @default.
- W4366778417 cites W4307662283 @default.
- W4366778417 cites W4323308044 @default.
- W4366778417 doi "https://doi.org/10.4043/32169-ms" @default.
- W4366778417 hasPublicationYear "2023" @default.
- W4366778417 type Work @default.
- W4366778417 citedByCount "1" @default.
- W4366778417 countsByYear W43667784172023 @default.
- W4366778417 crossrefType "proceedings-article" @default.
- W4366778417 hasAuthorship W4366778417A5034293672 @default.
- W4366778417 hasAuthorship W4366778417A5040902371 @default.
- W4366778417 hasConcept C127413603 @default.
- W4366778417 hasConcept C154945302 @default.
- W4366778417 hasConcept C25197100 @default.
- W4366778417 hasConcept C2779733308 @default.
- W4366778417 hasConcept C41008148 @default.
- W4366778417 hasConcept C42222113 @default.
- W4366778417 hasConcept C48044578 @default.
- W4366778417 hasConcept C61352017 @default.
- W4366778417 hasConcept C77088390 @default.
- W4366778417 hasConcept C78519656 @default.
- W4366778417 hasConceptScore W4366778417C127413603 @default.
- W4366778417 hasConceptScore W4366778417C154945302 @default.
- W4366778417 hasConceptScore W4366778417C25197100 @default.
- W4366778417 hasConceptScore W4366778417C2779733308 @default.
- W4366778417 hasConceptScore W4366778417C41008148 @default.
- W4366778417 hasConceptScore W4366778417C42222113 @default.
- W4366778417 hasConceptScore W4366778417C48044578 @default.
- W4366778417 hasConceptScore W4366778417C61352017 @default.
- W4366778417 hasConceptScore W4366778417C77088390 @default.
- W4366778417 hasConceptScore W4366778417C78519656 @default.
- W4366778417 hasLocation W43667784171 @default.
- W4366778417 hasOpenAccess W4366778417 @default.
- W4366778417 hasPrimaryLocation W43667784171 @default.
- W4366778417 hasRelatedWork W2006055952 @default.
- W4366778417 hasRelatedWork W2350160718 @default.
- W4366778417 hasRelatedWork W2353331960 @default.
- W4366778417 hasRelatedWork W2373855248 @default.
- W4366778417 hasRelatedWork W2377695445 @default.
- W4366778417 hasRelatedWork W2383399578 @default.
- W4366778417 hasRelatedWork W2385945129 @default.
- W4366778417 hasRelatedWork W270273641 @default.
- W4366778417 hasRelatedWork W2921163158 @default.
- W4366778417 hasRelatedWork W2995617783 @default.
- W4366778417 isParatext "false" @default.
- W4366778417 isRetracted "false" @default.
- W4366778417 workType "article" @default.