Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366779040> ?p ?o ?g. }
- W4366779040 endingPage "120160" @default.
- W4366779040 startingPage "120160" @default.
- W4366779040 abstract "Network coverage is a pivotal performance metric of wireless multihop networks (WMNs) determining the quality of service rendered by the network. Earlier, a few studies have analysed the network coverage by incorporating shadowing effects (SEs) and ignoring the influence of boundary effects (BEs). Besides, there is a void in the literature considering BEs plus SEs together. These approaches not only provide overestimation in network coverage, but also requires intensive simulation for their validation before the actual network installation; thus, increasing the computational time significantly. Furthermore, simulation time shoots up with an increase in network parameters like the number of sensor nodes (SNs) and their sensing range. In this study, we tackle this high simulation time problem by proposing a generalised regression neural network (GRNN) based machine learning (ML) approach to predict the k-coverage performance of a WMN placed in a rectangular-shaped region (RSR). To train the GRNN algorithm for two different set-ups, i.e., without and with BEs, we extract six potential features, namely length of RSR, breadth of RSR, sensing range of SNs, number of SNs, standard deviation of SEs σ, and the value required k through simulations. We also evaluate the importance of individual feature utilising regression tree ensemble technique and simultaneously analysed the sensitivity of each feature to predict the k-coverage probability of the network. The proposed approach has a better prediction accuracy of the k-coverage metric for both with and without BEs scenarios (having R = 0.78 and Root Mean Square Error (RMSE) = 0.14 for with BEs scenario, and R = 0.78 and RMSE = 0.15 for without BEs scenario). It can also be observed that the proposed approach achieves a higher accuracy with minimum computational time complexity as compared to other existing benchmark algorithms." @default.
- W4366779040 created "2023-04-25" @default.
- W4366779040 creator A5007353697 @default.
- W4366779040 creator A5025537247 @default.
- W4366779040 creator A5035058895 @default.
- W4366779040 creator A5039341643 @default.
- W4366779040 date "2023-09-01" @default.
- W4366779040 modified "2023-10-10" @default.
- W4366779040 title "A machine learning approach to predict the <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML altimg=si431.svg display=inline id=d1e519><mml:mi>k</mml:mi></mml:math>-coverage probability of wireless multihop networks considering boundary and shadowing effects" @default.
- W4366779040 cites W1727836686 @default.
- W4366779040 cites W1980067289 @default.
- W4366779040 cites W1981184823 @default.
- W4366779040 cites W1997637940 @default.
- W4366779040 cites W2013092942 @default.
- W4366779040 cites W2023425515 @default.
- W4366779040 cites W2024269204 @default.
- W4366779040 cites W2031061930 @default.
- W4366779040 cites W2124637492 @default.
- W4366779040 cites W2149723649 @default.
- W4366779040 cites W2320046825 @default.
- W4366779040 cites W2322341507 @default.
- W4366779040 cites W2562947506 @default.
- W4366779040 cites W2590160126 @default.
- W4366779040 cites W2593192889 @default.
- W4366779040 cites W2596124575 @default.
- W4366779040 cites W2773244316 @default.
- W4366779040 cites W2895206136 @default.
- W4366779040 cites W2910197492 @default.
- W4366779040 cites W2916641566 @default.
- W4366779040 cites W2945576179 @default.
- W4366779040 cites W2945976633 @default.
- W4366779040 cites W2946221582 @default.
- W4366779040 cites W2955338161 @default.
- W4366779040 cites W2963494912 @default.
- W4366779040 cites W2963713839 @default.
- W4366779040 cites W2966416380 @default.
- W4366779040 cites W2981989469 @default.
- W4366779040 cites W2982075362 @default.
- W4366779040 cites W2988410045 @default.
- W4366779040 cites W2999472659 @default.
- W4366779040 cites W2999686422 @default.
- W4366779040 cites W3007447684 @default.
- W4366779040 cites W3014079666 @default.
- W4366779040 cites W3016298350 @default.
- W4366779040 cites W3033768028 @default.
- W4366779040 cites W3036758230 @default.
- W4366779040 cites W3042908761 @default.
- W4366779040 cites W3046581958 @default.
- W4366779040 cites W3063849920 @default.
- W4366779040 cites W3082769744 @default.
- W4366779040 cites W3089283090 @default.
- W4366779040 cites W3097713188 @default.
- W4366779040 cites W3100492273 @default.
- W4366779040 cites W3100857292 @default.
- W4366779040 cites W3101904591 @default.
- W4366779040 cites W3108128683 @default.
- W4366779040 cites W3113501117 @default.
- W4366779040 cites W3114141005 @default.
- W4366779040 cites W3121469503 @default.
- W4366779040 cites W3123601247 @default.
- W4366779040 cites W3127256598 @default.
- W4366779040 cites W3127978539 @default.
- W4366779040 cites W3139362144 @default.
- W4366779040 cites W3159028135 @default.
- W4366779040 cites W3164586695 @default.
- W4366779040 cites W3201972326 @default.
- W4366779040 cites W4210505033 @default.
- W4366779040 cites W4226017353 @default.
- W4366779040 cites W4243320038 @default.
- W4366779040 cites W4281669538 @default.
- W4366779040 cites W4281757528 @default.
- W4366779040 cites W4312084256 @default.
- W4366779040 cites W4319593977 @default.
- W4366779040 doi "https://doi.org/10.1016/j.eswa.2023.120160" @default.
- W4366779040 hasPublicationYear "2023" @default.
- W4366779040 type Work @default.
- W4366779040 citedByCount "1" @default.
- W4366779040 countsByYear W43667790402023 @default.
- W4366779040 crossrefType "journal-article" @default.
- W4366779040 hasAuthorship W4366779040A5007353697 @default.
- W4366779040 hasAuthorship W4366779040A5025537247 @default.
- W4366779040 hasAuthorship W4366779040A5035058895 @default.
- W4366779040 hasAuthorship W4366779040A5039341643 @default.
- W4366779040 hasConcept C105795698 @default.
- W4366779040 hasConcept C11413529 @default.
- W4366779040 hasConcept C119857082 @default.
- W4366779040 hasConcept C124101348 @default.
- W4366779040 hasConcept C127413603 @default.
- W4366779040 hasConcept C139945424 @default.
- W4366779040 hasConcept C154945302 @default.
- W4366779040 hasConcept C159985019 @default.
- W4366779040 hasConcept C162324750 @default.
- W4366779040 hasConcept C176217482 @default.
- W4366779040 hasConcept C192562407 @default.
- W4366779040 hasConcept C204323151 @default.
- W4366779040 hasConcept C21200559 @default.
- W4366779040 hasConcept C21547014 @default.
- W4366779040 hasConcept C24326235 @default.