Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366809721> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4366809721 endingPage "183" @default.
- W4366809721 startingPage "183" @default.
- W4366809721 abstract "russell: the Journal of Bertrand Russell Studies n.s. 35 (winter 2015–16): 183 The Bertrand Russell Research Centre, McMaster U. issn 0036–01631; online 1913–8032 c:userskendocumentstype3502redrj 3502 053 red.docx 2015-11-12 7:16 PM oeviews RUSSELL’S PRINCIPLES OF MATHEMATICS G. E. Moore f the philosophical books published in the United Kingdom in 1903, the most important is Mr. Russell’s Principles of Mathematics.1 In this book, Mr. Russell tells us, he has two main objects. His first object is to establish the two very important propositions (1) “that all pure mathematics deals exclusively with concepts definable in terms of a very small number of fundamental logical concepts” and (2) “that all its propositions are deducible from a very small number of fundamental logical principles.” The examination of the principal branches of pure mathematics, which is necessary to establish these two propositions, occupies the last six Parts of the book, which are entitled respectively “Number”, “Quantity”, “Order”, “Infinity and Continuity ”, “Space”, and “Matter and Motion”. In these parts there is much which cannot be easily understood without a special knowledge of Mathematics, and much which has little bearing on philosophy, except so far as it helps to establish Mr. Russell’s two main propositions; but there is much also which is of considerable importance for philosophy, quite apart from its bearing on these two propositions: in particular, Mr. Russell examines very carefully the conceptions of Infinity and Continuity, and attempts to shew that they involve no antinomies. Part i, on the other hand, is devoted to Mr. Russell’s second object—“the explanation of the fundamental concepts which mathematics accepts as indefinable”, and is almost entirely philosophical in its nature. I shall endeavour to give some account (1) of the meaning and consequences of Mr. Russell’s two propositions concerning the relation of Logic and Mathematics (2) of some of the more important points dealt with in Part i and (3) of the theory of Infinity and Continuity. Mr. Russell is eminently qualified for his task by a thorough knowledge of Mathematics and by great philosophical acumen ; and it is certain that no philosopher ought in future to handle any of the subjects discussed in this book, without taking account of the arguments advanced in it.2 1 The Principles of Mathematics. 2 [The remainder of Moore’s very long, unpublished review may be read in the Russell Archives, Rec. Acq. 116.—Ed.] l= ..." @default.
- W4366809721 created "2023-04-25" @default.
- W4366809721 creator A5009887309 @default.
- W4366809721 date "2015-12-01" @default.
- W4366809721 modified "2023-10-17" @default.
- W4366809721 title "Bertrand Russell’s Principles of Mathematics [introductory paragraph]" @default.
- W4366809721 doi "https://doi.org/10.1353/rss.2015.0002" @default.
- W4366809721 hasPublicationYear "2015" @default.
- W4366809721 type Work @default.
- W4366809721 citedByCount "0" @default.
- W4366809721 crossrefType "journal-article" @default.
- W4366809721 hasAuthorship W4366809721A5009887309 @default.
- W4366809721 hasConcept C111472728 @default.
- W4366809721 hasConcept C111919701 @default.
- W4366809721 hasConcept C136764020 @default.
- W4366809721 hasConcept C138885662 @default.
- W4366809721 hasConcept C144559511 @default.
- W4366809721 hasConcept C145420912 @default.
- W4366809721 hasConcept C199343813 @default.
- W4366809721 hasConcept C2777206241 @default.
- W4366809721 hasConcept C2777686260 @default.
- W4366809721 hasConcept C2781238097 @default.
- W4366809721 hasConcept C33923547 @default.
- W4366809721 hasConcept C40238689 @default.
- W4366809721 hasConcept C41008148 @default.
- W4366809721 hasConcept C41895202 @default.
- W4366809721 hasConcept C71924100 @default.
- W4366809721 hasConceptScore W4366809721C111472728 @default.
- W4366809721 hasConceptScore W4366809721C111919701 @default.
- W4366809721 hasConceptScore W4366809721C136764020 @default.
- W4366809721 hasConceptScore W4366809721C138885662 @default.
- W4366809721 hasConceptScore W4366809721C144559511 @default.
- W4366809721 hasConceptScore W4366809721C145420912 @default.
- W4366809721 hasConceptScore W4366809721C199343813 @default.
- W4366809721 hasConceptScore W4366809721C2777206241 @default.
- W4366809721 hasConceptScore W4366809721C2777686260 @default.
- W4366809721 hasConceptScore W4366809721C2781238097 @default.
- W4366809721 hasConceptScore W4366809721C33923547 @default.
- W4366809721 hasConceptScore W4366809721C40238689 @default.
- W4366809721 hasConceptScore W4366809721C41008148 @default.
- W4366809721 hasConceptScore W4366809721C41895202 @default.
- W4366809721 hasConceptScore W4366809721C71924100 @default.
- W4366809721 hasIssue "2" @default.
- W4366809721 hasLocation W43668097211 @default.
- W4366809721 hasOpenAccess W4366809721 @default.
- W4366809721 hasPrimaryLocation W43668097211 @default.
- W4366809721 hasRelatedWork W1588556810 @default.
- W4366809721 hasRelatedWork W2037484390 @default.
- W4366809721 hasRelatedWork W2054258938 @default.
- W4366809721 hasRelatedWork W2384896988 @default.
- W4366809721 hasRelatedWork W2387134327 @default.
- W4366809721 hasRelatedWork W2748952813 @default.
- W4366809721 hasRelatedWork W2899084033 @default.
- W4366809721 hasRelatedWork W2901686979 @default.
- W4366809721 hasRelatedWork W3133839746 @default.
- W4366809721 hasRelatedWork W4311714614 @default.
- W4366809721 hasVolume "35" @default.
- W4366809721 isParatext "false" @default.
- W4366809721 isRetracted "false" @default.
- W4366809721 workType "article" @default.