Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366814159> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4366814159 endingPage "361" @default.
- W4366814159 startingPage "347" @default.
- W4366814159 abstract "This is a continued study of Li et al. (2011) for the regularization of ill-conditioning problems, where the minimal singular value σmin of discrete matrices is infinitesimal. To remove the effects of high frequency caused by the singular vector of σmin better, we combine the Tikhonov regularization (TR) with the truncated singular value decomposition (TSVD) (simply denoted by T-TR). New computational formulas of the traditional condition number (Cond) and the effective condition number (Cond_eff) are derived, and a brief error analysis is made. The regularization parameter λ is involved in the TR, and its better (or optimal) choices are essential in both theory and computation. For ill-conditioning problems, stability is more imperative than accuracy. The most important criterion is to reduce the Cond. Consider the linear algebraic equations Ax = b. The optimal regularization parameter for the TR is derived as λ=σmaxσmin, where σmax and σmin(>0) are the maximal and the minimal singular values of matrix A, respectively. The L-curve techniques emphasize the ill-conditioning of ‖xλ‖ (see Hansen (1998)). Note that the norm ‖xλ‖ is only part of the Cond in stability. In fact, by using regularization, the Cond may be greatly reduced, while the errors do not increase much. The second important criterion is for both stability and solution accuracy. The sensitivity index proposed in Zhang et al. (2021) indicates the severity of ill-conditioning via accuracy for comparing different numerical methods and techniques. The sensitivity index is effective not only to select the source nodes in the method of fundamental solutions (MFS), but also to select the regularization parameter in the TR. The regularization choices of the T-TR are similar to those of the TR because differences of the Cond and the errors between the TR and the T-TR are insignificant. Numerical experiments are reported by the MFS for Laplace’s equation, to support the new regularization techniques proposed. For data fitting, imaging processing, pattern recognition, and machine learning, the ‖xλ‖ is, however, more important than Cond for ill-conditioning. The L-curve techniques are used in wide applications, and discussed in Hansen (1998). The parameter choices are rather complicated if the crossover region is not small. In this paper, we apply the sensitivity index to L-curves, the optimal parameter λL−curve can be found by the minimal sensitivity index. The λL−curve may also be found by the lowest line that passes the origin. The new algorithms are simple and effective." @default.
- W4366814159 created "2023-04-25" @default.
- W4366814159 creator A5009406942 @default.
- W4366814159 creator A5014988509 @default.
- W4366814159 creator A5031859692 @default.
- W4366814159 creator A5067028141 @default.
- W4366814159 date "2023-07-01" @default.
- W4366814159 modified "2023-09-26" @default.
- W4366814159 title "New regularization techniques for ill-conditioning problems and their applications: Choices of regularization parameters" @default.
- W4366814159 cites W1941583664 @default.
- W4366814159 cites W1968735445 @default.
- W4366814159 cites W1973207547 @default.
- W4366814159 cites W1992317813 @default.
- W4366814159 cites W2008095986 @default.
- W4366814159 cites W2019358395 @default.
- W4366814159 cites W2019787708 @default.
- W4366814159 cites W2031604650 @default.
- W4366814159 cites W2035885121 @default.
- W4366814159 cites W2044500254 @default.
- W4366814159 cites W2045596450 @default.
- W4366814159 cites W2066549325 @default.
- W4366814159 cites W2081900403 @default.
- W4366814159 cites W2085360454 @default.
- W4366814159 cites W2085765819 @default.
- W4366814159 cites W2109828727 @default.
- W4366814159 cites W2169021366 @default.
- W4366814159 cites W2405515784 @default.
- W4366814159 cites W3085509556 @default.
- W4366814159 cites W3111455513 @default.
- W4366814159 cites W4200162047 @default.
- W4366814159 cites W2099397409 @default.
- W4366814159 doi "https://doi.org/10.1016/j.enganabound.2023.04.013" @default.
- W4366814159 hasPublicationYear "2023" @default.
- W4366814159 type Work @default.
- W4366814159 citedByCount "0" @default.
- W4366814159 crossrefType "journal-article" @default.
- W4366814159 hasAuthorship W4366814159A5009406942 @default.
- W4366814159 hasAuthorship W4366814159A5014988509 @default.
- W4366814159 hasAuthorship W4366814159A5031859692 @default.
- W4366814159 hasAuthorship W4366814159A5067028141 @default.
- W4366814159 hasConcept C109282560 @default.
- W4366814159 hasConcept C11413529 @default.
- W4366814159 hasConcept C121332964 @default.
- W4366814159 hasConcept C134306372 @default.
- W4366814159 hasConcept C135252773 @default.
- W4366814159 hasConcept C152442038 @default.
- W4366814159 hasConcept C154945302 @default.
- W4366814159 hasConcept C158693339 @default.
- W4366814159 hasConcept C22789450 @default.
- W4366814159 hasConcept C2776135515 @default.
- W4366814159 hasConcept C28826006 @default.
- W4366814159 hasConcept C33923547 @default.
- W4366814159 hasConcept C41008148 @default.
- W4366814159 hasConcept C45374587 @default.
- W4366814159 hasConcept C62520636 @default.
- W4366814159 hasConcept C84545080 @default.
- W4366814159 hasConceptScore W4366814159C109282560 @default.
- W4366814159 hasConceptScore W4366814159C11413529 @default.
- W4366814159 hasConceptScore W4366814159C121332964 @default.
- W4366814159 hasConceptScore W4366814159C134306372 @default.
- W4366814159 hasConceptScore W4366814159C135252773 @default.
- W4366814159 hasConceptScore W4366814159C152442038 @default.
- W4366814159 hasConceptScore W4366814159C154945302 @default.
- W4366814159 hasConceptScore W4366814159C158693339 @default.
- W4366814159 hasConceptScore W4366814159C22789450 @default.
- W4366814159 hasConceptScore W4366814159C2776135515 @default.
- W4366814159 hasConceptScore W4366814159C28826006 @default.
- W4366814159 hasConceptScore W4366814159C33923547 @default.
- W4366814159 hasConceptScore W4366814159C41008148 @default.
- W4366814159 hasConceptScore W4366814159C45374587 @default.
- W4366814159 hasConceptScore W4366814159C62520636 @default.
- W4366814159 hasConceptScore W4366814159C84545080 @default.
- W4366814159 hasFunder F4320321001 @default.
- W4366814159 hasFunder F4320338464 @default.
- W4366814159 hasLocation W43668141591 @default.
- W4366814159 hasOpenAccess W4366814159 @default.
- W4366814159 hasPrimaryLocation W43668141591 @default.
- W4366814159 hasRelatedWork W1531780090 @default.
- W4366814159 hasRelatedWork W2012577502 @default.
- W4366814159 hasRelatedWork W2373436489 @default.
- W4366814159 hasRelatedWork W2616678780 @default.
- W4366814159 hasRelatedWork W2890609812 @default.
- W4366814159 hasRelatedWork W3046265042 @default.
- W4366814159 hasRelatedWork W3100585083 @default.
- W4366814159 hasRelatedWork W3114212224 @default.
- W4366814159 hasRelatedWork W4200162047 @default.
- W4366814159 hasRelatedWork W4366814159 @default.
- W4366814159 hasVolume "152" @default.
- W4366814159 isParatext "false" @default.
- W4366814159 isRetracted "false" @default.
- W4366814159 workType "article" @default.