Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366822646> ?p ?o ?g. }
- W4366822646 endingPage "2213" @default.
- W4366822646 startingPage "2205" @default.
- W4366822646 abstract "Most patients with Parkinson's disease (PD) have different degrees of movement disorders, and effective gait analysis has a huge potential for uncovering hidden gait patterns to achieve the diagnosis of patients with PD. In this paper, the Static-Dynamic temporal networks are proposed for gait analysis. Our model involves a Static temporal pathway and a Dynamic temporal pathway. In the Static temporal pathway, the time series information of each sensor is processed independently with a parallel one-dimension convolutional neural network (1D-Convnet) to extract respective depth features. In the Dynamic temporal pathway, the stitched surface of the feet is deemed to be an irregular image, and the transfer of the force points at all levels on the sole is regarded as the optical flow. Then, the motion information of the force points at all levels is extracted by 16 parallel two-dimension convolutional neural network (2D-Convnet) independently. The results show that the Static-Dynamic temporal networks achieved better performance in gait detection of PD patients than other previous methods. Among them, the accuracy of PD diagnosis reached 96.7%, and the accuracy of severity prediction of PD reached 92.3%." @default.
- W4366822646 created "2023-04-25" @default.
- W4366822646 creator A5007494796 @default.
- W4366822646 creator A5021293751 @default.
- W4366822646 creator A5040558103 @default.
- W4366822646 creator A5049801163 @default.
- W4366822646 creator A5057858806 @default.
- W4366822646 creator A5083340190 @default.
- W4366822646 date "2023-01-01" @default.
- W4366822646 modified "2023-10-14" @default.
- W4366822646 title "Static-Dynamic Temporal Networks for Parkinson’s Disease Detection and Severity Prediction" @default.
- W4366822646 cites W131540282 @default.
- W4366822646 cites W1688059676 @default.
- W4366822646 cites W1841373314 @default.
- W4366822646 cites W2024929112 @default.
- W4366822646 cites W2047997064 @default.
- W4366822646 cites W2052513666 @default.
- W4366822646 cites W2064188882 @default.
- W4366822646 cites W2138443306 @default.
- W4366822646 cites W2156150820 @default.
- W4366822646 cites W2162908184 @default.
- W4366822646 cites W2171056747 @default.
- W4366822646 cites W2272122054 @default.
- W4366822646 cites W2298634118 @default.
- W4366822646 cites W2542200242 @default.
- W4366822646 cites W2565639579 @default.
- W4366822646 cites W2735939755 @default.
- W4366822646 cites W2752782242 @default.
- W4366822646 cites W2786497292 @default.
- W4366822646 cites W2794295133 @default.
- W4366822646 cites W2884923535 @default.
- W4366822646 cites W2896201949 @default.
- W4366822646 cites W2909648190 @default.
- W4366822646 cites W2980180565 @default.
- W4366822646 cites W2981665155 @default.
- W4366822646 cites W3006012411 @default.
- W4366822646 cites W3100640506 @default.
- W4366822646 cites W3118781914 @default.
- W4366822646 cites W3125925759 @default.
- W4366822646 cites W3127140219 @default.
- W4366822646 cites W3127528059 @default.
- W4366822646 cites W3154237080 @default.
- W4366822646 cites W3155768702 @default.
- W4366822646 cites W3183613279 @default.
- W4366822646 cites W3195468209 @default.
- W4366822646 cites W3205384836 @default.
- W4366822646 cites W3211269841 @default.
- W4366822646 cites W3215406315 @default.
- W4366822646 cites W4200563196 @default.
- W4366822646 cites W4206771478 @default.
- W4366822646 cites W4210728628 @default.
- W4366822646 cites W4212913302 @default.
- W4366822646 cites W4241279990 @default.
- W4366822646 cites W4249888301 @default.
- W4366822646 cites W4310020043 @default.
- W4366822646 doi "https://doi.org/10.1109/tnsre.2023.3269569" @default.
- W4366822646 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37093723" @default.
- W4366822646 hasPublicationYear "2023" @default.
- W4366822646 type Work @default.
- W4366822646 citedByCount "1" @default.
- W4366822646 countsByYear W43668226462023 @default.
- W4366822646 crossrefType "journal-article" @default.
- W4366822646 hasAuthorship W4366822646A5007494796 @default.
- W4366822646 hasAuthorship W4366822646A5021293751 @default.
- W4366822646 hasAuthorship W4366822646A5040558103 @default.
- W4366822646 hasAuthorship W4366822646A5049801163 @default.
- W4366822646 hasAuthorship W4366822646A5057858806 @default.
- W4366822646 hasAuthorship W4366822646A5083340190 @default.
- W4366822646 hasBestOaLocation W43668226461 @default.
- W4366822646 hasConcept C104114177 @default.
- W4366822646 hasConcept C115961682 @default.
- W4366822646 hasConcept C151800584 @default.
- W4366822646 hasConcept C153180895 @default.
- W4366822646 hasConcept C154945302 @default.
- W4366822646 hasConcept C155542232 @default.
- W4366822646 hasConcept C202444582 @default.
- W4366822646 hasConcept C33676613 @default.
- W4366822646 hasConcept C33923547 @default.
- W4366822646 hasConcept C41008148 @default.
- W4366822646 hasConcept C71924100 @default.
- W4366822646 hasConcept C81363708 @default.
- W4366822646 hasConcept C99508421 @default.
- W4366822646 hasConceptScore W4366822646C104114177 @default.
- W4366822646 hasConceptScore W4366822646C115961682 @default.
- W4366822646 hasConceptScore W4366822646C151800584 @default.
- W4366822646 hasConceptScore W4366822646C153180895 @default.
- W4366822646 hasConceptScore W4366822646C154945302 @default.
- W4366822646 hasConceptScore W4366822646C155542232 @default.
- W4366822646 hasConceptScore W4366822646C202444582 @default.
- W4366822646 hasConceptScore W4366822646C33676613 @default.
- W4366822646 hasConceptScore W4366822646C33923547 @default.
- W4366822646 hasConceptScore W4366822646C41008148 @default.
- W4366822646 hasConceptScore W4366822646C71924100 @default.
- W4366822646 hasConceptScore W4366822646C81363708 @default.
- W4366822646 hasConceptScore W4366822646C99508421 @default.
- W4366822646 hasFunder F4320321001 @default.
- W4366822646 hasLocation W43668226461 @default.
- W4366822646 hasLocation W43668226462 @default.