Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366823945> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4366823945 abstract "Background Cone-beam computed tomography (CBCT) imaging offers high-quality three-dimensional (3D) acquisition with great spatial resolution, given by the use of isometric voxels, when compared with conventional computed tomography (CT). The current literature supports a median reduction of 76% (up to 85% reduction) of patients' radiation exposure when imaged by CBCT versus CT. Clinical applications of CBCT imaging can benefit both medical and dental professions. Because these images are digital, the use of algorithms can facilitate the diagnosis of pathologies and the management of patients. There is pertinence to developing rapid and efficient segmentation of teeth from facial volumes acquired with CBCT. Methodology In this paper, a segmentation algorithm using heuristics based on pulp and teeth anatomy as a pre-personalized model is proposed for both single and multi-rooted teeth. Results A quantitative analysis was performed by comparing the results of the algorithm to a gold standard obtained from manual segmentation using the Dice index, average surface distance (ASD), and Mahalanobis distance (MHD) metrics. Qualitative analysis was also performed between the algorithm and the gold standard of 78 teeth. The Dice index average for all pulp segmentation (n = 78) was 83.82% (SD = 6.54%). ASD for all pulp segmentation (n = 78) was 0.21 mm (SD = 0.34 mm). Pulp segmentation compared with MHD averages was 0.19 mm (SD = 0.21 mm). The results of teeth segmentation metrics were similar to pulp segmentation metrics. For the total teeth (n = 78) included in this study, the Dice index average was 92% (SD = 13.10%), ASD was low at 0.19 mm (SD = 0.15 mm), and MHD was 0.11 mm (SD = 0.09 mm). Despite good quantitative results, the qualitative analysis yielded fair results due to large categories. When compared with existing automatic segmentation methods, our approach enables an effective segmentation for both pulp and teeth. Conclusions Our proposed algorithm for pulp and teeth segmentation yields results that are comparable to those obtained by the state-of-the-art methods in both quantitative and qualitative analysis, thus offering interesting perspectives in many clinical fields of dentistry." @default.
- W4366823945 created "2023-04-25" @default.
- W4366823945 creator A5001612368 @default.
- W4366823945 creator A5018337621 @default.
- W4366823945 creator A5074824881 @default.
- W4366823945 creator A5085939700 @default.
- W4366823945 creator A5087698170 @default.
- W4366823945 date "2023-04-24" @default.
- W4366823945 modified "2023-10-01" @default.
- W4366823945 title "Automatic Pulp and Teeth Three-Dimensional Modeling of Single and Multi-Rooted Teeth Based on Cone-Beam Computed Tomography Imaging: A Promising Approach With Clinical and Therapeutic Outcomes" @default.
- W4366823945 cites W111958082 @default.
- W4366823945 cites W1909740415 @default.
- W4366823945 cites W1967485214 @default.
- W4366823945 cites W1993881635 @default.
- W4366823945 cites W2018514242 @default.
- W4366823945 cites W2023001411 @default.
- W4366823945 cites W2026616100 @default.
- W4366823945 cites W2026786686 @default.
- W4366823945 cites W2029521524 @default.
- W4366823945 cites W2044250551 @default.
- W4366823945 cites W2062772322 @default.
- W4366823945 cites W2095758049 @default.
- W4366823945 cites W2109851731 @default.
- W4366823945 cites W2110774752 @default.
- W4366823945 cites W2133059825 @default.
- W4366823945 cites W2157579005 @default.
- W4366823945 cites W2168781864 @default.
- W4366823945 cites W2169267373 @default.
- W4366823945 cites W2172155788 @default.
- W4366823945 cites W2411046910 @default.
- W4366823945 cites W2538337555 @default.
- W4366823945 cites W2762076816 @default.
- W4366823945 cites W279886618 @default.
- W4366823945 cites W2808796091 @default.
- W4366823945 cites W2810028732 @default.
- W4366823945 cites W2892041455 @default.
- W4366823945 cites W2921919079 @default.
- W4366823945 cites W2922786829 @default.
- W4366823945 cites W2923610369 @default.
- W4366823945 cites W2938788930 @default.
- W4366823945 cites W2940735993 @default.
- W4366823945 cites W2951864735 @default.
- W4366823945 cites W2979485542 @default.
- W4366823945 cites W2979900986 @default.
- W4366823945 cites W2982793828 @default.
- W4366823945 cites W2987938226 @default.
- W4366823945 cites W2996625744 @default.
- W4366823945 cites W3004769142 @default.
- W4366823945 cites W3021337333 @default.
- W4366823945 cites W3034573091 @default.
- W4366823945 cites W3035806228 @default.
- W4366823945 cites W3042288142 @default.
- W4366823945 cites W3084108918 @default.
- W4366823945 cites W3092447054 @default.
- W4366823945 cites W3141513209 @default.
- W4366823945 cites W3158394755 @default.
- W4366823945 doi "https://doi.org/10.7759/cureus.38066" @default.
- W4366823945 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37234140" @default.
- W4366823945 hasPublicationYear "2023" @default.
- W4366823945 type Work @default.
- W4366823945 citedByCount "0" @default.
- W4366823945 crossrefType "journal-article" @default.
- W4366823945 hasAuthorship W4366823945A5001612368 @default.
- W4366823945 hasAuthorship W4366823945A5018337621 @default.
- W4366823945 hasAuthorship W4366823945A5074824881 @default.
- W4366823945 hasAuthorship W4366823945A5085939700 @default.
- W4366823945 hasAuthorship W4366823945A5087698170 @default.
- W4366823945 hasBestOaLocation W43668239451 @default.
- W4366823945 hasConcept C126838900 @default.
- W4366823945 hasConcept C154945302 @default.
- W4366823945 hasConcept C2779813781 @default.
- W4366823945 hasConcept C41008148 @default.
- W4366823945 hasConcept C544519230 @default.
- W4366823945 hasConcept C71924100 @default.
- W4366823945 hasConcept C89600930 @default.
- W4366823945 hasConceptScore W4366823945C126838900 @default.
- W4366823945 hasConceptScore W4366823945C154945302 @default.
- W4366823945 hasConceptScore W4366823945C2779813781 @default.
- W4366823945 hasConceptScore W4366823945C41008148 @default.
- W4366823945 hasConceptScore W4366823945C544519230 @default.
- W4366823945 hasConceptScore W4366823945C71924100 @default.
- W4366823945 hasConceptScore W4366823945C89600930 @default.
- W4366823945 hasLocation W43668239451 @default.
- W4366823945 hasLocation W43668239452 @default.
- W4366823945 hasLocation W43668239453 @default.
- W4366823945 hasOpenAccess W4366823945 @default.
- W4366823945 hasPrimaryLocation W43668239451 @default.
- W4366823945 hasRelatedWork W144883078 @default.
- W4366823945 hasRelatedWork W2005437358 @default.
- W4366823945 hasRelatedWork W2138214894 @default.
- W4366823945 hasRelatedWork W2361006516 @default.
- W4366823945 hasRelatedWork W2517104666 @default.
- W4366823945 hasRelatedWork W2532775738 @default.
- W4366823945 hasRelatedWork W2790662084 @default.
- W4366823945 hasRelatedWork W2954384599 @default.
- W4366823945 hasRelatedWork W3089607159 @default.
- W4366823945 hasRelatedWork W4385556756 @default.
- W4366823945 isParatext "false" @default.
- W4366823945 isRetracted "false" @default.
- W4366823945 workType "article" @default.