Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366824814> ?p ?o ?g. }
- W4366824814 endingPage "120222" @default.
- W4366824814 startingPage "120222" @default.
- W4366824814 abstract "The rapid growth of location-based social networks (LBSN) has generated massive multi-mode entities such as users, locations and social topics, as well as multi-relationships among them. Learning deep user preferences over point of interests (POIs) and social topics in LBSN has attracted more and more attentions. However, most of the previous studies have failed to incorporate the severely sparse and multi-relational data of heterogeneous LBSN, which plays a vital role to enhance the prediction performance. Toward this challenge, in this paper, we propose a unified pairwise relationship prediction framework based on graph neural networks combined with dual attention mechanism model, dubbed GE2AT, which has fully considered to incorporate three types of user behavioral relations to better capture user preference over different entities. Specifically, we first model LBSN as one user social graph only including social relations, and other two bipartite graphs involved user-location check-in relations and user-social topics following relations respectively. Then, we propose dual graph attention networks to jointly learn deep latent representations of different entities by aggregating features from neighbors with different importance weights. After that, we adopt two multi-layer perceptron (MLP) to output the pairwise preferences of users over POIs and social topics. In addition, to alleviate data sparsity problem, on the basis of MLPs output results, we further leverage social relationships as social-aware influence for similar user preferences so as to enhance the pairwise prediction performance. Extensive experiments on two real-world datasets have demonstrated that our proposed framework GE2AT significantly outperform the state-of-the-art baselines on both prediction tasks for user preferences on POIs and social topics." @default.
- W4366824814 created "2023-04-25" @default.
- W4366824814 creator A5025319461 @default.
- W4366824814 creator A5066289448 @default.
- W4366824814 creator A5082349977 @default.
- W4366824814 creator A5087218204 @default.
- W4366824814 date "2023-10-01" @default.
- W4366824814 modified "2023-10-14" @default.
- W4366824814 title "Deep pairwise learning for user preferences via dual graph attention model in location-based social networks" @default.
- W4366824814 cites W2017921654 @default.
- W4366824814 cites W2033198212 @default.
- W4366824814 cites W2035949918 @default.
- W4366824814 cites W2044672016 @default.
- W4366824814 cites W2052626679 @default.
- W4366824814 cites W2071702404 @default.
- W4366824814 cites W2090891622 @default.
- W4366824814 cites W2099970131 @default.
- W4366824814 cites W2109742433 @default.
- W4366824814 cites W2116341502 @default.
- W4366824814 cites W2122516730 @default.
- W4366824814 cites W2387462954 @default.
- W4366824814 cites W2471486255 @default.
- W4366824814 cites W2472954632 @default.
- W4366824814 cites W2539781657 @default.
- W4366824814 cites W2567312369 @default.
- W4366824814 cites W2605350416 @default.
- W4366824814 cites W2700550412 @default.
- W4366824814 cites W2743289629 @default.
- W4366824814 cites W2801404331 @default.
- W4366824814 cites W2801647701 @default.
- W4366824814 cites W2807729903 @default.
- W4366824814 cites W2905432015 @default.
- W4366824814 cites W2935159546 @default.
- W4366824814 cites W2947144452 @default.
- W4366824814 cites W2981975915 @default.
- W4366824814 cites W2982108874 @default.
- W4366824814 cites W3006543797 @default.
- W4366824814 cites W3034646226 @default.
- W4366824814 cites W3042856524 @default.
- W4366824814 cites W3084418435 @default.
- W4366824814 cites W3084915134 @default.
- W4366824814 cites W3100278010 @default.
- W4366824814 cites W3100848837 @default.
- W4366824814 cites W3104097132 @default.
- W4366824814 cites W3104326162 @default.
- W4366824814 cites W3105705953 @default.
- W4366824814 cites W3123332422 @default.
- W4366824814 cites W4221101570 @default.
- W4366824814 cites W4224281686 @default.
- W4366824814 cites W4289866492 @default.
- W4366824814 doi "https://doi.org/10.1016/j.eswa.2023.120222" @default.
- W4366824814 hasPublicationYear "2023" @default.
- W4366824814 type Work @default.
- W4366824814 citedByCount "1" @default.
- W4366824814 countsByYear W43668248142023 @default.
- W4366824814 crossrefType "journal-article" @default.
- W4366824814 hasAuthorship W4366824814A5025319461 @default.
- W4366824814 hasAuthorship W4366824814A5066289448 @default.
- W4366824814 hasAuthorship W4366824814A5082349977 @default.
- W4366824814 hasAuthorship W4366824814A5087218204 @default.
- W4366824814 hasBestOaLocation W43668248142 @default.
- W4366824814 hasConcept C119857082 @default.
- W4366824814 hasConcept C124101348 @default.
- W4366824814 hasConcept C124952713 @default.
- W4366824814 hasConcept C132525143 @default.
- W4366824814 hasConcept C136764020 @default.
- W4366824814 hasConcept C142362112 @default.
- W4366824814 hasConcept C153083717 @default.
- W4366824814 hasConcept C154945302 @default.
- W4366824814 hasConcept C184898388 @default.
- W4366824814 hasConcept C23123220 @default.
- W4366824814 hasConcept C2780980858 @default.
- W4366824814 hasConcept C41008148 @default.
- W4366824814 hasConcept C4727928 @default.
- W4366824814 hasConcept C518677369 @default.
- W4366824814 hasConcept C80444323 @default.
- W4366824814 hasConceptScore W4366824814C119857082 @default.
- W4366824814 hasConceptScore W4366824814C124101348 @default.
- W4366824814 hasConceptScore W4366824814C124952713 @default.
- W4366824814 hasConceptScore W4366824814C132525143 @default.
- W4366824814 hasConceptScore W4366824814C136764020 @default.
- W4366824814 hasConceptScore W4366824814C142362112 @default.
- W4366824814 hasConceptScore W4366824814C153083717 @default.
- W4366824814 hasConceptScore W4366824814C154945302 @default.
- W4366824814 hasConceptScore W4366824814C184898388 @default.
- W4366824814 hasConceptScore W4366824814C23123220 @default.
- W4366824814 hasConceptScore W4366824814C2780980858 @default.
- W4366824814 hasConceptScore W4366824814C41008148 @default.
- W4366824814 hasConceptScore W4366824814C4727928 @default.
- W4366824814 hasConceptScore W4366824814C518677369 @default.
- W4366824814 hasConceptScore W4366824814C80444323 @default.
- W4366824814 hasLocation W43668248141 @default.
- W4366824814 hasLocation W43668248142 @default.
- W4366824814 hasOpenAccess W4366824814 @default.
- W4366824814 hasPrimaryLocation W43668248141 @default.
- W4366824814 hasRelatedWork W1692008701 @default.
- W4366824814 hasRelatedWork W2487162673 @default.
- W4366824814 hasRelatedWork W2562400057 @default.