Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366827558> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4366827558 endingPage "153" @default.
- W4366827558 startingPage "153" @default.
- W4366827558 abstract "With the rapid growth of cloud computing and the creation of large-scale systems such as IoT environments, the failure of machines/devices and, by extension, the systems that rely on them is a major risk to their performance, usability, and the security systems that support them. The need to predict such anomalies in combination with the creation of fault-tolerant systems to manage them is a key factor for the development of safer and more stable systems. In this work, a model consisting of survival analysis, feature analysis/selection, and machine learning was created, in order to predict machine failure. The approach is based on the random survival forest model and an architecture that aims to filter the features that are of major importance to the cause of machine failure. The objectives of this paper are to (1) Create an efficient feature filtering mechanism, by combining different methods of feature importance ranking, that can remove the “noise” from the data and leave only the relevant information. The filtering mechanism uses the RadViz, COX, Rank2D, random survival forest feature ranking, and recursive feature elimination, with each of the methods used to achieve a different understanding of the data. (2) Predict the machine failure with a high degree of accuracy using the RSF model, which is trained with optimal features. The proposed method yields superior performance compared to other similar models, with an impressive C-index accuracy rate of approximately 97%. The consistency of the model’s predictions makes it viable in large-scale systems, where it can be used to improve the performance and security of these systems while also lowering their overall cost and longevity." @default.
- W4366827558 created "2023-04-25" @default.
- W4366827558 creator A5019350988 @default.
- W4366827558 creator A5059860750 @default.
- W4366827558 creator A5064140827 @default.
- W4366827558 date "2023-04-22" @default.
- W4366827558 modified "2023-10-05" @default.
- W4366827558 title "Machine Failure Prediction Using Survival Analysis" @default.
- W4366827558 cites W1999466943 @default.
- W4366827558 cites W2044076969 @default.
- W4366827558 cites W2111538337 @default.
- W4366827558 cites W2240015487 @default.
- W4366827558 cites W2401731092 @default.
- W4366827558 cites W2758081838 @default.
- W4366827558 cites W2765823842 @default.
- W4366827558 cites W2805330622 @default.
- W4366827558 cites W2902700103 @default.
- W4366827558 cites W2920987960 @default.
- W4366827558 cites W2944870752 @default.
- W4366827558 cites W2950686487 @default.
- W4366827558 cites W2956467153 @default.
- W4366827558 cites W2963232127 @default.
- W4366827558 cites W3012113580 @default.
- W4366827558 cites W3099478002 @default.
- W4366827558 cites W3117514546 @default.
- W4366827558 cites W3133219602 @default.
- W4366827558 cites W3165201689 @default.
- W4366827558 cites W4205315565 @default.
- W4366827558 cites W4214850287 @default.
- W4366827558 cites W4224129293 @default.
- W4366827558 cites W4285248741 @default.
- W4366827558 cites W4296312268 @default.
- W4366827558 doi "https://doi.org/10.3390/fi15050153" @default.
- W4366827558 hasPublicationYear "2023" @default.
- W4366827558 type Work @default.
- W4366827558 citedByCount "0" @default.
- W4366827558 crossrefType "journal-article" @default.
- W4366827558 hasAuthorship W4366827558A5019350988 @default.
- W4366827558 hasAuthorship W4366827558A5059860750 @default.
- W4366827558 hasAuthorship W4366827558A5064140827 @default.
- W4366827558 hasBestOaLocation W43668275581 @default.
- W4366827558 hasConcept C111919701 @default.
- W4366827558 hasConcept C119857082 @default.
- W4366827558 hasConcept C124101348 @default.
- W4366827558 hasConcept C138885662 @default.
- W4366827558 hasConcept C148483581 @default.
- W4366827558 hasConcept C154945302 @default.
- W4366827558 hasConcept C169258074 @default.
- W4366827558 hasConcept C189430467 @default.
- W4366827558 hasConcept C2776401178 @default.
- W4366827558 hasConcept C41008148 @default.
- W4366827558 hasConcept C41895202 @default.
- W4366827558 hasConcept C79974875 @default.
- W4366827558 hasConceptScore W4366827558C111919701 @default.
- W4366827558 hasConceptScore W4366827558C119857082 @default.
- W4366827558 hasConceptScore W4366827558C124101348 @default.
- W4366827558 hasConceptScore W4366827558C138885662 @default.
- W4366827558 hasConceptScore W4366827558C148483581 @default.
- W4366827558 hasConceptScore W4366827558C154945302 @default.
- W4366827558 hasConceptScore W4366827558C169258074 @default.
- W4366827558 hasConceptScore W4366827558C189430467 @default.
- W4366827558 hasConceptScore W4366827558C2776401178 @default.
- W4366827558 hasConceptScore W4366827558C41008148 @default.
- W4366827558 hasConceptScore W4366827558C41895202 @default.
- W4366827558 hasConceptScore W4366827558C79974875 @default.
- W4366827558 hasIssue "5" @default.
- W4366827558 hasLocation W43668275581 @default.
- W4366827558 hasOpenAccess W4366827558 @default.
- W4366827558 hasPrimaryLocation W43668275581 @default.
- W4366827558 hasRelatedWork W2767419625 @default.
- W4366827558 hasRelatedWork W3017044142 @default.
- W4366827558 hasRelatedWork W3036202055 @default.
- W4366827558 hasRelatedWork W3168850895 @default.
- W4366827558 hasRelatedWork W3182009020 @default.
- W4366827558 hasRelatedWork W4225360065 @default.
- W4366827558 hasRelatedWork W4293525103 @default.
- W4366827558 hasRelatedWork W4308191010 @default.
- W4366827558 hasRelatedWork W4323021782 @default.
- W4366827558 hasRelatedWork W4361733514 @default.
- W4366827558 hasVolume "15" @default.
- W4366827558 isParatext "false" @default.
- W4366827558 isRetracted "false" @default.
- W4366827558 workType "article" @default.