Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366828958> ?p ?o ?g. }
- W4366828958 endingPage "4184" @default.
- W4366828958 startingPage "4184" @default.
- W4366828958 abstract "Alzheimer’s disease (AD) is now classified as a silent pandemic due to concerning current statistics and future predictions. Despite this, no effective treatment or accurate diagnosis currently exists. The negative impacts of invasive techniques and the failure of clinical trials have prompted a shift in research towards non-invasive treatments. In light of this, there is a growing need for early detection of AD through non-invasive approaches. The abundance of data generated by non-invasive techniques such as blood component monitoring, imaging, wearable sensors, and bio-sensors not only offers a platform for more accurate and reliable bio-marker developments but also significantly reduces patient pain, psychological impact, risk of complications, and cost. Nevertheless, there are challenges concerning the computational analysis of the large quantities of data generated, which can provide crucial information for the early diagnosis of AD. Hence, the integration of artificial intelligence and deep learning is critical to addressing these challenges. This work attempts to examine some of the facts and the current situation of these approaches to AD diagnosis by leveraging the potential of these tools and utilizing the vast amount of non-invasive data in order to revolutionize the early detection of AD according to the principles of a new non-invasive medicine era." @default.
- W4366828958 created "2023-04-25" @default.
- W4366828958 creator A5001357889 @default.
- W4366828958 creator A5002406655 @default.
- W4366828958 creator A5032210066 @default.
- W4366828958 creator A5057894101 @default.
- W4366828958 creator A5069517572 @default.
- W4366828958 creator A5082119404 @default.
- W4366828958 date "2023-04-22" @default.
- W4366828958 modified "2023-10-16" @default.
- W4366828958 title "Revolutionizing the Early Detection of Alzheimer’s Disease through Non-Invasive Biomarkers: The Role of Artificial Intelligence and Deep Learning" @default.
- W4366828958 cites W177263842 @default.
- W4366828958 cites W2302532339 @default.
- W4366828958 cites W2479918415 @default.
- W4366828958 cites W2540391766 @default.
- W4366828958 cites W2554181966 @default.
- W4366828958 cites W2620042345 @default.
- W4366828958 cites W2750075274 @default.
- W4366828958 cites W2785757836 @default.
- W4366828958 cites W2788473288 @default.
- W4366828958 cites W2789388366 @default.
- W4366828958 cites W2798054687 @default.
- W4366828958 cites W2798424783 @default.
- W4366828958 cites W2805351254 @default.
- W4366828958 cites W2807735147 @default.
- W4366828958 cites W2810100810 @default.
- W4366828958 cites W2895859838 @default.
- W4366828958 cites W2899635607 @default.
- W4366828958 cites W2899831773 @default.
- W4366828958 cites W2905658674 @default.
- W4366828958 cites W2912594198 @default.
- W4366828958 cites W2913994783 @default.
- W4366828958 cites W2917347002 @default.
- W4366828958 cites W2920387298 @default.
- W4366828958 cites W2922012941 @default.
- W4366828958 cites W2922180305 @default.
- W4366828958 cites W2934594063 @default.
- W4366828958 cites W2946316777 @default.
- W4366828958 cites W2949166581 @default.
- W4366828958 cites W2953077781 @default.
- W4366828958 cites W2968265306 @default.
- W4366828958 cites W2978647781 @default.
- W4366828958 cites W2979675636 @default.
- W4366828958 cites W2987779221 @default.
- W4366828958 cites W2993429139 @default.
- W4366828958 cites W3002049595 @default.
- W4366828958 cites W3021130382 @default.
- W4366828958 cites W3022547264 @default.
- W4366828958 cites W3028602493 @default.
- W4366828958 cites W3034944932 @default.
- W4366828958 cites W3037024247 @default.
- W4366828958 cites W3042723530 @default.
- W4366828958 cites W3059668454 @default.
- W4366828958 cites W3080289936 @default.
- W4366828958 cites W3085276197 @default.
- W4366828958 cites W3087344810 @default.
- W4366828958 cites W3087553935 @default.
- W4366828958 cites W3092648605 @default.
- W4366828958 cites W3094944686 @default.
- W4366828958 cites W3120817929 @default.
- W4366828958 cites W3121966255 @default.
- W4366828958 cites W3121969030 @default.
- W4366828958 cites W3130671764 @default.
- W4366828958 cites W3140743785 @default.
- W4366828958 cites W3145497542 @default.
- W4366828958 cites W3154200075 @default.
- W4366828958 cites W3154495231 @default.
- W4366828958 cites W3158733189 @default.
- W4366828958 cites W3169630651 @default.
- W4366828958 cites W3171782608 @default.
- W4366828958 cites W3173900468 @default.
- W4366828958 cites W3183198896 @default.
- W4366828958 cites W3204896264 @default.
- W4366828958 cites W3209009742 @default.
- W4366828958 cites W4200070350 @default.
- W4366828958 cites W4200523886 @default.
- W4366828958 cites W4206053969 @default.
- W4366828958 cites W4206793319 @default.
- W4366828958 cites W4210777225 @default.
- W4366828958 cites W4220792492 @default.
- W4366828958 cites W4220867605 @default.
- W4366828958 cites W4221041873 @default.
- W4366828958 cites W4223567456 @default.
- W4366828958 cites W4224247151 @default.
- W4366828958 cites W4281483004 @default.
- W4366828958 cites W4283658720 @default.
- W4366828958 cites W4297679089 @default.
- W4366828958 cites W4307948038 @default.
- W4366828958 cites W4308645523 @default.
- W4366828958 cites W4309412555 @default.
- W4366828958 cites W4309705206 @default.
- W4366828958 cites W4320492998 @default.
- W4366828958 cites W4321019889 @default.
- W4366828958 cites W4322719918 @default.
- W4366828958 cites W4322731651 @default.
- W4366828958 cites W4324309277 @default.
- W4366828958 cites W4360770700 @default.
- W4366828958 doi "https://doi.org/10.3390/s23094184" @default.