Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366832023> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4366832023 abstract "Abstract Background/Aims There has been a sharp rise in the use of opioids for non-cancer pain globally. Despite increased awareness of adverse effects, they remain commonly prescribed in the UK. Clinical prediction models offer the possibility of assessing individual risk for a given outcome allowing better allocation of resources towards those at risk. Machine learning (ML) approaches can address nonlinear relationships and complex interactions between variables and are increasingly used to develop these models. Our objective is to develop, validate, and compare the performance of three clinical prediction models based on regression and ML, which leverage primary care data to estimate the risk of opioid-related death in patients prescribed opioids for non-cancer pain. Methods Patients ≥18 years old without prior cancer who were prescribed any opioid between 01/01/2006 and 31/12/2017 were identified in the Clinical Practice Research Datalink (CPRD). Only new opioid users were included. Index date was date of first prescription, with censoring at withdrawal from the CPRD or after not having an opioid prescription for two years. Baseline data were extracted from each patient’s records, including demographic information, comorbidities, concomitant medications, and the opioid type being prescribed, collecting 49 candidate predictors. These were used to train three competing risk models: a Fine&Gray regression model with LASSO regularisation, a survival random forest (RF), and a neural network (DeepHit). The outcome was opioid-related mortality and other cause mortality the competing event, defined using a curated ICD-10 codelist. Predictive performance of the models, such as the area under the receiver characteristic operator curve (AUC-ROC), were calculated using 5-fold cross validation. Results We included a total of 1,029,681 patients, of which 1,240 experienced an opioid-related death, and 52,833 experienced a competing death. The Fine&Gray, RF and DeepHit models achieved average AUC-ROC values of 0.83(95% CI: 0.81-0.85), 0.78(0.77-0.79) and 0.81(0.80-0.82) respectively. At the optimum risk cut point, as per Youden’s index, the models achieved sensitivities of 0.82(0.78-0.85), 0.75(0.67-0.82) and 0.80(0.78-0.83), and specificities of 0.78(0.73-0.82), 0.75(0.68-0.83) and 0.78(0.75-0.80) when predicting 12-month risk, respectively. In the Fine&Gray model, factors associated with an increased risk were history of substance use disorder (hazards ratio [HR]: 3.40, 95% CI:3.12-3.69) and alcohol abuse (HR:3.07, 95% CI:2.93-3.22). COPD (HR:1.53, 95% CI:1.48-1.58) and moderate liver disease (HR:1.31, 95% CI:0.99-1.63) were the comorbidities associated with highest risk. Morphine (HR:2.39, 95% CI:2.08-2.69) and oxycodone (HR:1.10, 95% CI:1.00-1.20) at initiation and concomitant gabapentinoids (HR:1.99, 95% CI:1.80-2.18) and benzodiazepines (HR:1.30, 95% CI:1.24-1.36) were associated with an increased risk. HR for rheumatologic diseases was 1.08 (95% CI:1.01-1.14). Conclusion The Fine&Gray and DeepHit models exhibited comparable discriminative performance. Substance abuse, lung and liver comorbidities, morphine or oxycodone at initiation and co-prescription of gabapentinoids and benzodiazepines, were some of the factors associated with a higher risk of opioid-related mortality. Disclosure J. Benitez-Aurioles: None. D. Jenkins: None. Y. Huang: None. C. Ramirez Medina: None. N. Peek: None. M. Jani: None." @default.
- W4366832023 created "2023-04-25" @default.
- W4366832023 creator A5020263487 @default.
- W4366832023 creator A5033406574 @default.
- W4366832023 creator A5051849916 @default.
- W4366832023 creator A5059494163 @default.
- W4366832023 creator A5081380493 @default.
- W4366832023 creator A5090256356 @default.
- W4366832023 date "2023-04-01" @default.
- W4366832023 modified "2023-09-25" @default.
- W4366832023 title "P045 Development and evaluation of machine learning algorithms for the prediction of opioid-related deaths among UK patients with non-cancer pain" @default.
- W4366832023 doi "https://doi.org/10.1093/rheumatology/kead104.086" @default.
- W4366832023 hasPublicationYear "2023" @default.
- W4366832023 type Work @default.
- W4366832023 citedByCount "0" @default.
- W4366832023 crossrefType "journal-article" @default.
- W4366832023 hasAuthorship W4366832023A5020263487 @default.
- W4366832023 hasAuthorship W4366832023A5033406574 @default.
- W4366832023 hasAuthorship W4366832023A5051849916 @default.
- W4366832023 hasAuthorship W4366832023A5059494163 @default.
- W4366832023 hasAuthorship W4366832023A5081380493 @default.
- W4366832023 hasAuthorship W4366832023A5090256356 @default.
- W4366832023 hasBestOaLocation W43668320231 @default.
- W4366832023 hasConcept C119857082 @default.
- W4366832023 hasConcept C126322002 @default.
- W4366832023 hasConcept C151956035 @default.
- W4366832023 hasConcept C153083717 @default.
- W4366832023 hasConcept C154945302 @default.
- W4366832023 hasConcept C170493617 @default.
- W4366832023 hasConcept C177713679 @default.
- W4366832023 hasConcept C2426938 @default.
- W4366832023 hasConcept C2778750930 @default.
- W4366832023 hasConcept C2779148768 @default.
- W4366832023 hasConcept C2781063702 @default.
- W4366832023 hasConcept C41008148 @default.
- W4366832023 hasConcept C71924100 @default.
- W4366832023 hasConcept C98274493 @default.
- W4366832023 hasConceptScore W4366832023C119857082 @default.
- W4366832023 hasConceptScore W4366832023C126322002 @default.
- W4366832023 hasConceptScore W4366832023C151956035 @default.
- W4366832023 hasConceptScore W4366832023C153083717 @default.
- W4366832023 hasConceptScore W4366832023C154945302 @default.
- W4366832023 hasConceptScore W4366832023C170493617 @default.
- W4366832023 hasConceptScore W4366832023C177713679 @default.
- W4366832023 hasConceptScore W4366832023C2426938 @default.
- W4366832023 hasConceptScore W4366832023C2778750930 @default.
- W4366832023 hasConceptScore W4366832023C2779148768 @default.
- W4366832023 hasConceptScore W4366832023C2781063702 @default.
- W4366832023 hasConceptScore W4366832023C41008148 @default.
- W4366832023 hasConceptScore W4366832023C71924100 @default.
- W4366832023 hasConceptScore W4366832023C98274493 @default.
- W4366832023 hasIssue "Supplement_2" @default.
- W4366832023 hasLocation W43668320231 @default.
- W4366832023 hasOpenAccess W4366832023 @default.
- W4366832023 hasPrimaryLocation W43668320231 @default.
- W4366832023 hasRelatedWork W2799493198 @default.
- W4366832023 hasRelatedWork W2799958929 @default.
- W4366832023 hasRelatedWork W2801475680 @default.
- W4366832023 hasRelatedWork W2801796785 @default.
- W4366832023 hasRelatedWork W2802434398 @default.
- W4366832023 hasRelatedWork W2885187828 @default.
- W4366832023 hasRelatedWork W2895285328 @default.
- W4366832023 hasRelatedWork W2898047469 @default.
- W4366832023 hasRelatedWork W2999325914 @default.
- W4366832023 hasRelatedWork W4306726989 @default.
- W4366832023 hasVolume "62" @default.
- W4366832023 isParatext "false" @default.
- W4366832023 isRetracted "false" @default.
- W4366832023 workType "article" @default.