Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366850880> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4366850880 abstract "The computational power of contemporary quantum processors is limited by hardware errors that cause computations to fail. In principle, each quantum processor's computational capabilities can be described with a capability function that quantifies how well a processor can run each possible quantum circuit (i.e., program), as a map from circuits to the processor's success rates on those circuits. However, capability functions are typically unknown and challenging to model, as the particular errors afflicting a specific quantum processor are a priori unknown and difficult to completely characterize. In this work, we investigate using artificial neural networks to learn an approximation to a processor's capability function. We explore how to define the capability function, and we explain how data for training neural networks can be efficiently obtained for a capability function defined using process fidelity. We then investigate using convolutional neural networks to model a quantum computer's capability. Using simulations, we show that convolutional neural networks can accurately model a processor's capability when that processor experiences gate-dependent, time-dependent, and context-dependent stochastic errors. We then discuss some challenges to creating useful neural network capability models for experimental processors, such as generalizing beyond training distributions and modelling the effects of coherent errors. Lastly, we apply our neural networks to model the capabilities of cloud-access quantum computing systems, obtaining moderate prediction accuracy (average absolute error around 2-5%)." @default.
- W4366850880 created "2023-04-25" @default.
- W4366850880 creator A5017059690 @default.
- W4366850880 creator A5079189889 @default.
- W4366850880 creator A5089852173 @default.
- W4366850880 creator A5089944153 @default.
- W4366850880 date "2023-04-20" @default.
- W4366850880 modified "2023-09-26" @default.
- W4366850880 title "Learning a quantum computer's capability using convolutional neural networks" @default.
- W4366850880 doi "https://doi.org/10.48550/arxiv.2304.10650" @default.
- W4366850880 hasPublicationYear "2023" @default.
- W4366850880 type Work @default.
- W4366850880 citedByCount "0" @default.
- W4366850880 crossrefType "posted-content" @default.
- W4366850880 hasAuthorship W4366850880A5017059690 @default.
- W4366850880 hasAuthorship W4366850880A5079189889 @default.
- W4366850880 hasAuthorship W4366850880A5089852173 @default.
- W4366850880 hasAuthorship W4366850880A5089944153 @default.
- W4366850880 hasBestOaLocation W43668508801 @default.
- W4366850880 hasConcept C113775141 @default.
- W4366850880 hasConcept C11413529 @default.
- W4366850880 hasConcept C121332964 @default.
- W4366850880 hasConcept C124148022 @default.
- W4366850880 hasConcept C14036430 @default.
- W4366850880 hasConcept C151730666 @default.
- W4366850880 hasConcept C154945302 @default.
- W4366850880 hasConcept C2779343474 @default.
- W4366850880 hasConcept C41008148 @default.
- W4366850880 hasConcept C50644808 @default.
- W4366850880 hasConcept C51003876 @default.
- W4366850880 hasConcept C58053490 @default.
- W4366850880 hasConcept C62520636 @default.
- W4366850880 hasConcept C78458016 @default.
- W4366850880 hasConcept C81363708 @default.
- W4366850880 hasConcept C84114770 @default.
- W4366850880 hasConcept C86803240 @default.
- W4366850880 hasConceptScore W4366850880C113775141 @default.
- W4366850880 hasConceptScore W4366850880C11413529 @default.
- W4366850880 hasConceptScore W4366850880C121332964 @default.
- W4366850880 hasConceptScore W4366850880C124148022 @default.
- W4366850880 hasConceptScore W4366850880C14036430 @default.
- W4366850880 hasConceptScore W4366850880C151730666 @default.
- W4366850880 hasConceptScore W4366850880C154945302 @default.
- W4366850880 hasConceptScore W4366850880C2779343474 @default.
- W4366850880 hasConceptScore W4366850880C41008148 @default.
- W4366850880 hasConceptScore W4366850880C50644808 @default.
- W4366850880 hasConceptScore W4366850880C51003876 @default.
- W4366850880 hasConceptScore W4366850880C58053490 @default.
- W4366850880 hasConceptScore W4366850880C62520636 @default.
- W4366850880 hasConceptScore W4366850880C78458016 @default.
- W4366850880 hasConceptScore W4366850880C81363708 @default.
- W4366850880 hasConceptScore W4366850880C84114770 @default.
- W4366850880 hasConceptScore W4366850880C86803240 @default.
- W4366850880 hasLocation W43668508801 @default.
- W4366850880 hasOpenAccess W4366850880 @default.
- W4366850880 hasPrimaryLocation W43668508801 @default.
- W4366850880 hasRelatedWork W1981303046 @default.
- W4366850880 hasRelatedWork W2052585299 @default.
- W4366850880 hasRelatedWork W2896790350 @default.
- W4366850880 hasRelatedWork W2903221501 @default.
- W4366850880 hasRelatedWork W2945158814 @default.
- W4366850880 hasRelatedWork W3094536227 @default.
- W4366850880 hasRelatedWork W4224061789 @default.
- W4366850880 hasRelatedWork W4224302939 @default.
- W4366850880 hasRelatedWork W4226258250 @default.
- W4366850880 hasRelatedWork W4288594684 @default.
- W4366850880 isParatext "false" @default.
- W4366850880 isRetracted "false" @default.
- W4366850880 workType "article" @default.