Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366967838> ?p ?o ?g. }
- W4366967838 endingPage "41132" @default.
- W4366967838 startingPage "41105" @default.
- W4366967838 abstract "Oil & gas forecasting is one of the most critical issues in reservoir management. Physics-based simulations are the most common models used for production forecasts in oilfields. Previous works based on Machine Learning (ML) developed models focused on the oil rate as unique target variable, a forecasting by one-day output, and just one class of reservoir (synthetic or actual). This work introduces a general data-driven model based on Recurrent Neural Networks to forecast an adaptive sequence of timestamps for the complete production rates (oil, gas, and water), and we also included the wellbore pressure as target variable, for both classes of reservoirs as actual as synthetic. The first dataset was obtained from the synthetic benchmark UNISIM-II-H, which simulates a carbonate reservoir in the Brazilian pre-salt; the second dataset is from an actual reservoir, the Volve oilfield, a decommissioned reservoir in the Norwegian North Sea. The forecasting is calculated using an input sequence of daily values from the historical record of the production rates and the pressure; the output is also a set of the values to the next sequence of days for one selected production variable (oil, gas, water, or pressure). The size of both input and output sets is adaptive and its adjustment depends on the dataset size and the production time. We built the model and compared it between the Long Short-Term Memory (LSTM) and the Gated Recurrent Unit (GRU) implementations. We tuned the architectural parameters of the model, the input size of historical records, and the output forecasting days. We performed the training/testing procedures with several sizes for the training dataset from the target wellbore and tested with the remaining data to evaluate the model stability. We adopted the Symmetric Mean Absolute Percentage Error (SMAPE) and the coefficient of determination r-square (R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> ) metrics to compare our forecasting values to the production rates and the pressure, most of the results for both synthetic and actual oilfields exhibited that the model can follow an accurate trend of the production rates and the pressure; and the output values are approximated. Forecasting values from the designed model exhibited closer values when compared to the expected data from the wellbores in most of the experiments, some cases exhibited an SMAPE lower than 2 and R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> up to 0.99. The model can learn the behavior of each production variable according to the training set and the forecasting output can be adapted for a set of several timestamps." @default.
- W4366967838 created "2023-04-26" @default.
- W4366967838 creator A5006955867 @default.
- W4366967838 creator A5018118876 @default.
- W4366967838 date "2023-01-01" @default.
- W4366967838 modified "2023-10-05" @default.
- W4366967838 title "The Golem: A General Data-Driven Model for Oil & Gas Forecasting Based on Recurrent Neural Networks" @default.
- W4366967838 cites W2038111690 @default.
- W4366967838 cites W2048760145 @default.
- W4366967838 cites W2064675550 @default.
- W4366967838 cites W2094708121 @default.
- W4366967838 cites W2110242546 @default.
- W4366967838 cites W2122321414 @default.
- W4366967838 cites W2122441292 @default.
- W4366967838 cites W2146927214 @default.
- W4366967838 cites W2283733733 @default.
- W4366967838 cites W2406593126 @default.
- W4366967838 cites W2510809708 @default.
- W4366967838 cites W2624878881 @default.
- W4366967838 cites W2765318199 @default.
- W4366967838 cites W2766622687 @default.
- W4366967838 cites W2766900003 @default.
- W4366967838 cites W2769325239 @default.
- W4366967838 cites W2789488193 @default.
- W4366967838 cites W2792835009 @default.
- W4366967838 cites W2802822790 @default.
- W4366967838 cites W2803505472 @default.
- W4366967838 cites W2807838313 @default.
- W4366967838 cites W2894821558 @default.
- W4366967838 cites W2895262063 @default.
- W4366967838 cites W2921167549 @default.
- W4366967838 cites W2930896677 @default.
- W4366967838 cites W2937448533 @default.
- W4366967838 cites W2942293734 @default.
- W4366967838 cites W2963276185 @default.
- W4366967838 cites W2964199361 @default.
- W4366967838 cites W2965966792 @default.
- W4366967838 cites W2984376566 @default.
- W4366967838 cites W3003462583 @default.
- W4366967838 cites W3099553341 @default.
- W4366967838 cites W3193266292 @default.
- W4366967838 cites W3199427609 @default.
- W4366967838 cites W3206719321 @default.
- W4366967838 cites W3217397655 @default.
- W4366967838 cites W4200611051 @default.
- W4366967838 cites W4221047501 @default.
- W4366967838 cites W4225375759 @default.
- W4366967838 cites W4285808681 @default.
- W4366967838 doi "https://doi.org/10.1109/access.2023.3269748" @default.
- W4366967838 hasPublicationYear "2023" @default.
- W4366967838 type Work @default.
- W4366967838 citedByCount "1" @default.
- W4366967838 countsByYear W43669678382023 @default.
- W4366967838 crossrefType "journal-article" @default.
- W4366967838 hasAuthorship W4366967838A5006955867 @default.
- W4366967838 hasAuthorship W4366967838A5018118876 @default.
- W4366967838 hasBestOaLocation W43669678381 @default.
- W4366967838 hasConcept C113954288 @default.
- W4366967838 hasConcept C127313418 @default.
- W4366967838 hasConcept C13280743 @default.
- W4366967838 hasConcept C134306372 @default.
- W4366967838 hasConcept C139719470 @default.
- W4366967838 hasConcept C147168706 @default.
- W4366967838 hasConcept C154945302 @default.
- W4366967838 hasConcept C162324750 @default.
- W4366967838 hasConcept C182365436 @default.
- W4366967838 hasConcept C185798385 @default.
- W4366967838 hasConcept C2778112365 @default.
- W4366967838 hasConcept C2778348673 @default.
- W4366967838 hasConcept C2779681308 @default.
- W4366967838 hasConcept C33923547 @default.
- W4366967838 hasConcept C41008148 @default.
- W4366967838 hasConcept C50644808 @default.
- W4366967838 hasConcept C54355233 @default.
- W4366967838 hasConcept C78762247 @default.
- W4366967838 hasConcept C79403827 @default.
- W4366967838 hasConcept C86803240 @default.
- W4366967838 hasConceptScore W4366967838C113954288 @default.
- W4366967838 hasConceptScore W4366967838C127313418 @default.
- W4366967838 hasConceptScore W4366967838C13280743 @default.
- W4366967838 hasConceptScore W4366967838C134306372 @default.
- W4366967838 hasConceptScore W4366967838C139719470 @default.
- W4366967838 hasConceptScore W4366967838C147168706 @default.
- W4366967838 hasConceptScore W4366967838C154945302 @default.
- W4366967838 hasConceptScore W4366967838C162324750 @default.
- W4366967838 hasConceptScore W4366967838C182365436 @default.
- W4366967838 hasConceptScore W4366967838C185798385 @default.
- W4366967838 hasConceptScore W4366967838C2778112365 @default.
- W4366967838 hasConceptScore W4366967838C2778348673 @default.
- W4366967838 hasConceptScore W4366967838C2779681308 @default.
- W4366967838 hasConceptScore W4366967838C33923547 @default.
- W4366967838 hasConceptScore W4366967838C41008148 @default.
- W4366967838 hasConceptScore W4366967838C50644808 @default.
- W4366967838 hasConceptScore W4366967838C54355233 @default.
- W4366967838 hasConceptScore W4366967838C78762247 @default.
- W4366967838 hasConceptScore W4366967838C79403827 @default.
- W4366967838 hasConceptScore W4366967838C86803240 @default.
- W4366967838 hasFunder F4320316889 @default.