Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366974966> ?p ?o ?g. }
- W4366974966 endingPage "100461" @default.
- W4366974966 startingPage "100461" @default.
- W4366974966 abstract "As observed in several previous studies, integrating more molecular modalities in multi-omics cancer survival models may not always improve model accuracy. In this study, we compared eight deep learning and four statistical integration techniques for survival prediction on 17 multi-omics datasets, examining model performance in terms of overall accuracy and noise resistance. We found that one deep learning method, mean late fusion, and two statistical methods, PriorityLasso and BlockForest, performed best in terms of both noise resistance and overall discriminative and calibration performance. Nevertheless, all methods struggled to adequately handle noise when too many modalities were added. In summary, we confirmed that current multi-omics survival methods are not sufficiently noise resistant. We recommend relying on only modalities for which there is known predictive value for a particular cancer type until models that have stronger noise-resistance properties are developed." @default.
- W4366974966 created "2023-04-27" @default.
- W4366974966 creator A5009367310 @default.
- W4366974966 creator A5063807584 @default.
- W4366974966 creator A5074876525 @default.
- W4366974966 date "2023-04-01" @default.
- W4366974966 modified "2023-10-18" @default.
- W4366974966 title "Systematic comparison of multi-omics survival models reveals a widespread lack of noise resistance" @default.
- W4366974966 cites W1986546598 @default.
- W4366974966 cites W2000703258 @default.
- W4366974966 cites W2005895632 @default.
- W4366974966 cites W2030678916 @default.
- W4366974966 cites W2044702943 @default.
- W4366974966 cites W2058865073 @default.
- W4366974966 cites W2069399470 @default.
- W4366974966 cites W2080309550 @default.
- W4366974966 cites W2084139018 @default.
- W4366974966 cites W2097360283 @default.
- W4366974966 cites W2120579447 @default.
- W4366974966 cites W2157076315 @default.
- W4366974966 cites W2158485828 @default.
- W4366974966 cites W2258675270 @default.
- W4366974966 cites W2329659234 @default.
- W4366974966 cites W2330406605 @default.
- W4366974966 cites W2753919178 @default.
- W4366974966 cites W2771041964 @default.
- W4366974966 cites W2795989238 @default.
- W4366974966 cites W2797883881 @default.
- W4366974966 cites W2798890825 @default.
- W4366974966 cites W2884724578 @default.
- W4366974966 cites W2906317964 @default.
- W4366974966 cites W2954499361 @default.
- W4366974966 cites W2996717911 @default.
- W4366974966 cites W3009545736 @default.
- W4366974966 cites W3028304854 @default.
- W4366974966 cites W3046858608 @default.
- W4366974966 cites W3085172652 @default.
- W4366974966 cites W3099478002 @default.
- W4366974966 cites W3105354225 @default.
- W4366974966 cites W3111736660 @default.
- W4366974966 cites W3163443268 @default.
- W4366974966 cites W3176016422 @default.
- W4366974966 cites W3176966473 @default.
- W4366974966 cites W4206956476 @default.
- W4366974966 cites W4285077411 @default.
- W4366974966 doi "https://doi.org/10.1016/j.crmeth.2023.100461" @default.
- W4366974966 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37159669" @default.
- W4366974966 hasPublicationYear "2023" @default.
- W4366974966 type Work @default.
- W4366974966 citedByCount "0" @default.
- W4366974966 crossrefType "journal-article" @default.
- W4366974966 hasAuthorship W4366974966A5009367310 @default.
- W4366974966 hasAuthorship W4366974966A5063807584 @default.
- W4366974966 hasAuthorship W4366974966A5074876525 @default.
- W4366974966 hasBestOaLocation W43669749661 @default.
- W4366974966 hasConcept C115961682 @default.
- W4366974966 hasConcept C119857082 @default.
- W4366974966 hasConcept C124101348 @default.
- W4366974966 hasConcept C144024400 @default.
- W4366974966 hasConcept C154945302 @default.
- W4366974966 hasConcept C157585117 @default.
- W4366974966 hasConcept C2779903281 @default.
- W4366974966 hasConcept C36289849 @default.
- W4366974966 hasConcept C41008148 @default.
- W4366974966 hasConcept C60644358 @default.
- W4366974966 hasConcept C86803240 @default.
- W4366974966 hasConcept C97931131 @default.
- W4366974966 hasConcept C99498987 @default.
- W4366974966 hasConceptScore W4366974966C115961682 @default.
- W4366974966 hasConceptScore W4366974966C119857082 @default.
- W4366974966 hasConceptScore W4366974966C124101348 @default.
- W4366974966 hasConceptScore W4366974966C144024400 @default.
- W4366974966 hasConceptScore W4366974966C154945302 @default.
- W4366974966 hasConceptScore W4366974966C157585117 @default.
- W4366974966 hasConceptScore W4366974966C2779903281 @default.
- W4366974966 hasConceptScore W4366974966C36289849 @default.
- W4366974966 hasConceptScore W4366974966C41008148 @default.
- W4366974966 hasConceptScore W4366974966C60644358 @default.
- W4366974966 hasConceptScore W4366974966C86803240 @default.
- W4366974966 hasConceptScore W4366974966C97931131 @default.
- W4366974966 hasConceptScore W4366974966C99498987 @default.
- W4366974966 hasFunder F4320321652 @default.
- W4366974966 hasIssue "4" @default.
- W4366974966 hasLocation W43669749661 @default.
- W4366974966 hasLocation W43669749662 @default.
- W4366974966 hasLocation W43669749663 @default.
- W4366974966 hasLocation W43669749664 @default.
- W4366974966 hasOpenAccess W4366974966 @default.
- W4366974966 hasPrimaryLocation W43669749661 @default.
- W4366974966 hasRelatedWork W2026121273 @default.
- W4366974966 hasRelatedWork W2102106825 @default.
- W4366974966 hasRelatedWork W2494424170 @default.
- W4366974966 hasRelatedWork W2752271443 @default.
- W4366974966 hasRelatedWork W2801772698 @default.
- W4366974966 hasRelatedWork W2961085424 @default.
- W4366974966 hasRelatedWork W2983744209 @default.
- W4366974966 hasRelatedWork W4306674287 @default.
- W4366974966 hasRelatedWork W66955737 @default.