Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366976518> ?p ?o ?g. }
- W4366976518 endingPage "095102" @default.
- W4366976518 startingPage "095102" @default.
- W4366976518 abstract "Abstract Research aimed at diagnosing rolling bearing faults is of great significance to the health management of equipment. In order to solve the problem that rolling bearings are faced with variable operating conditions and the fault features collected are single in actual operation, a new lightweight deep convolution neural network model called FC-CLDCNN, composed of a convolution pooling dropout group with two-stream feature fusion and cross-load adaptive characteristics, is proposed for rolling bearing fault diagnosis. First, the original vibration signal is transformed into a one-dimensional frequency domain signal and a two-dimensional time-frequency graph by fast Fourier transform and continuous wavelet transform. Then, the one-dimensional frequency domain signal and two-dimensional time-frequency diagram are input into the two channels of the model respectively to extract and recognize the one-dimensional and two-dimensional features. Finally, the one-dimensional and two-dimensional features are combined in the fusion layer, and the fault types are classified in the softmax layer. FC-CLDCNN has the characteristics of two-stream feature fusion, which can give full consideration to the characteristics of rolling bearing fault data, so as to achieve efficient and accurate identification. The Case Western Reserve University (CWRU) dataset is used for training and testing, and it is proved that the proposed model has high classification accuracy and excellent adaptability across loads. The Machinery Failure Prevention Technology (MFPT) dataset was used to validate the excellent diagnostic performance and generalization of the proposed model." @default.
- W4366976518 created "2023-04-27" @default.
- W4366976518 creator A5019309851 @default.
- W4366976518 creator A5047649726 @default.
- W4366976518 creator A5050339289 @default.
- W4366976518 creator A5053568035 @default.
- W4366976518 date "2023-05-24" @default.
- W4366976518 modified "2023-10-02" @default.
- W4366976518 title "A deep convolutional neural network model with two-stream feature fusion and cross-load adaptive characteristics for fault diagnosis" @default.
- W4366976518 cites W1597576211 @default.
- W4366976518 cites W1975514583 @default.
- W4366976518 cites W1987164599 @default.
- W4366976518 cites W2062098096 @default.
- W4366976518 cites W2094625209 @default.
- W4366976518 cites W2117671523 @default.
- W4366976518 cites W2147800946 @default.
- W4366976518 cites W2556013418 @default.
- W4366976518 cites W2606521772 @default.
- W4366976518 cites W2618530766 @default.
- W4366976518 cites W2692693673 @default.
- W4366976518 cites W2744790985 @default.
- W4366976518 cites W2790195878 @default.
- W4366976518 cites W2794869810 @default.
- W4366976518 cites W2804879845 @default.
- W4366976518 cites W2891319189 @default.
- W4366976518 cites W2896793764 @default.
- W4366976518 cites W2898760173 @default.
- W4366976518 cites W2902395336 @default.
- W4366976518 cites W2915423430 @default.
- W4366976518 cites W2953825279 @default.
- W4366976518 cites W2966008650 @default.
- W4366976518 cites W2987480074 @default.
- W4366976518 cites W2989695365 @default.
- W4366976518 cites W2992919850 @default.
- W4366976518 cites W3005893892 @default.
- W4366976518 cites W3033236487 @default.
- W4366976518 cites W3082305718 @default.
- W4366976518 cites W3083630455 @default.
- W4366976518 cites W3090238656 @default.
- W4366976518 cites W3090887241 @default.
- W4366976518 cites W3094105523 @default.
- W4366976518 cites W3118616132 @default.
- W4366976518 cites W3119665018 @default.
- W4366976518 cites W3126242280 @default.
- W4366976518 cites W3128175548 @default.
- W4366976518 cites W3128906627 @default.
- W4366976518 cites W3128991835 @default.
- W4366976518 cites W3133240864 @default.
- W4366976518 cites W3137501699 @default.
- W4366976518 cites W3137811281 @default.
- W4366976518 cites W3139302692 @default.
- W4366976518 cites W3165809733 @default.
- W4366976518 cites W3174788865 @default.
- W4366976518 cites W3191184807 @default.
- W4366976518 cites W3194185277 @default.
- W4366976518 cites W3200337201 @default.
- W4366976518 cites W3204719278 @default.
- W4366976518 cites W3204767606 @default.
- W4366976518 cites W3205097059 @default.
- W4366976518 cites W3213433258 @default.
- W4366976518 cites W4210799532 @default.
- W4366976518 cites W4212869741 @default.
- W4366976518 cites W4212992602 @default.
- W4366976518 cites W4214517744 @default.
- W4366976518 cites W4223641466 @default.
- W4366976518 cites W4224110272 @default.
- W4366976518 cites W4226084554 @default.
- W4366976518 cites W4319596972 @default.
- W4366976518 doi "https://doi.org/10.1088/1361-6501/acd01e" @default.
- W4366976518 hasPublicationYear "2023" @default.
- W4366976518 type Work @default.
- W4366976518 citedByCount "1" @default.
- W4366976518 countsByYear W43669765182023 @default.
- W4366976518 crossrefType "journal-article" @default.
- W4366976518 hasAuthorship W4366976518A5019309851 @default.
- W4366976518 hasAuthorship W4366976518A5047649726 @default.
- W4366976518 hasAuthorship W4366976518A5050339289 @default.
- W4366976518 hasAuthorship W4366976518A5053568035 @default.
- W4366976518 hasConcept C103824480 @default.
- W4366976518 hasConcept C11413529 @default.
- W4366976518 hasConcept C127313418 @default.
- W4366976518 hasConcept C138885662 @default.
- W4366976518 hasConcept C153180895 @default.
- W4366976518 hasConcept C154945302 @default.
- W4366976518 hasConcept C165205528 @default.
- W4366976518 hasConcept C175551986 @default.
- W4366976518 hasConcept C188441871 @default.
- W4366976518 hasConcept C19118579 @default.
- W4366976518 hasConcept C199360897 @default.
- W4366976518 hasConcept C199978012 @default.
- W4366976518 hasConcept C2776401178 @default.
- W4366976518 hasConcept C2779843651 @default.
- W4366976518 hasConcept C31972630 @default.
- W4366976518 hasConcept C41008148 @default.
- W4366976518 hasConcept C41895202 @default.
- W4366976518 hasConcept C45347329 @default.
- W4366976518 hasConcept C50644808 @default.
- W4366976518 hasConcept C81363708 @default.