Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366977979> ?p ?o ?g. }
- W4366977979 endingPage "102560" @default.
- W4366977979 startingPage "102560" @default.
- W4366977979 abstract "Hospital-acquired pressure injuries (HAPIs) constitute a significant challenge harming thousands of people worldwide yearly. While various tools and methods are used to identify pressure injuries, artificial intelligence (AI) and decision support systems (DSS) can help to reduce HAPIs risks by proactively identifying patients at risk and preventing them before harming patients.This paper comprehensively reviews AI and DSS applications for HAPIs prediction using Electronic Health Records (EHR), including a systematic literature review and bibliometric analysis.A systematic literature review was conducted through PRISMA and bibliometric analysis. In February 2023, the search was performed using four electronic databases: SCOPIS, PubMed, EBSCO, and PMCID. Articles on using AI and DSS in the management of PIs were included.The search approach yielded 319 articles, 39 of which have been included and classified into 27 AI-related and 12 DSS-related categories. The years of publication varied from 2006 to 2023, with 40% of the studies taking place in the US. Most studies focused on using AI algorithms or DSS for HAPIs prediction in inpatient units using various types of data such as electronic health records, PI assessment scales, and expert knowledge-based and environmental data to identify the risk factors associated with HAPIs development.There is insufficient evidence in the existing literature concerning the real impact of AI or DSS on making decisions for HAPIs treatment or prevention. Most studies reviewed are solely hypothetical and retrospective prediction models, with no actual application in healthcare settings. The accuracy rates, prediction results, and intervention procedures suggested based on the prediction, on the other hand, should inspire researchers to combine both approaches with larger-scale data to bring a new venue for HAPIs prevention and to investigate and adopt the suggested solutions to the existing gaps in AI and DSS prediction methods." @default.
- W4366977979 created "2023-04-27" @default.
- W4366977979 creator A5027676547 @default.
- W4366977979 creator A5054604298 @default.
- W4366977979 creator A5067348633 @default.
- W4366977979 date "2023-07-01" @default.
- W4366977979 modified "2023-09-25" @default.
- W4366977979 title "Leveraging artificial intelligence and decision support systems in hospital-acquired pressure injuries prediction: A comprehensive review" @default.
- W4366977979 cites W1746000343 @default.
- W4366977979 cites W1902240948 @default.
- W4366977979 cites W2016316210 @default.
- W4366977979 cites W2028577022 @default.
- W4366977979 cites W2031297992 @default.
- W4366977979 cites W2039101591 @default.
- W4366977979 cites W2070080552 @default.
- W4366977979 cites W2078164022 @default.
- W4366977979 cites W2080549615 @default.
- W4366977979 cites W2102020282 @default.
- W4366977979 cites W2117307241 @default.
- W4366977979 cites W2146589784 @default.
- W4366977979 cites W2150220236 @default.
- W4366977979 cites W2151216810 @default.
- W4366977979 cites W2326749166 @default.
- W4366977979 cites W2591685297 @default.
- W4366977979 cites W2601569069 @default.
- W4366977979 cites W2727607233 @default.
- W4366977979 cites W2735486252 @default.
- W4366977979 cites W2769726739 @default.
- W4366977979 cites W2883757579 @default.
- W4366977979 cites W2884722977 @default.
- W4366977979 cites W2887368792 @default.
- W4366977979 cites W2898849586 @default.
- W4366977979 cites W2913345157 @default.
- W4366977979 cites W3083563679 @default.
- W4366977979 cites W3096211615 @default.
- W4366977979 cites W3113245157 @default.
- W4366977979 cites W3120578299 @default.
- W4366977979 cites W3127726773 @default.
- W4366977979 cites W3136024552 @default.
- W4366977979 cites W3138469915 @default.
- W4366977979 cites W3150507470 @default.
- W4366977979 cites W3160856016 @default.
- W4366977979 cites W3196407926 @default.
- W4366977979 cites W3213066428 @default.
- W4366977979 cites W4210256371 @default.
- W4366977979 cites W4221051447 @default.
- W4366977979 cites W4225395798 @default.
- W4366977979 cites W4282958595 @default.
- W4366977979 cites W4313260191 @default.
- W4366977979 cites W4313471910 @default.
- W4366977979 doi "https://doi.org/10.1016/j.artmed.2023.102560" @default.
- W4366977979 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37295900" @default.
- W4366977979 hasPublicationYear "2023" @default.
- W4366977979 type Work @default.
- W4366977979 citedByCount "0" @default.
- W4366977979 crossrefType "journal-article" @default.
- W4366977979 hasAuthorship W4366977979A5027676547 @default.
- W4366977979 hasAuthorship W4366977979A5054604298 @default.
- W4366977979 hasAuthorship W4366977979A5067348633 @default.
- W4366977979 hasConcept C107327155 @default.
- W4366977979 hasConcept C119857082 @default.
- W4366977979 hasConcept C12174686 @default.
- W4366977979 hasConcept C154945302 @default.
- W4366977979 hasConcept C160735492 @default.
- W4366977979 hasConcept C162324750 @default.
- W4366977979 hasConcept C17744445 @default.
- W4366977979 hasConcept C189708586 @default.
- W4366977979 hasConcept C199539241 @default.
- W4366977979 hasConcept C2522767166 @default.
- W4366977979 hasConcept C2779473830 @default.
- W4366977979 hasConcept C3019952477 @default.
- W4366977979 hasConcept C38652104 @default.
- W4366977979 hasConcept C41008148 @default.
- W4366977979 hasConcept C45804977 @default.
- W4366977979 hasConcept C50522688 @default.
- W4366977979 hasConcept C63527458 @default.
- W4366977979 hasConceptScore W4366977979C107327155 @default.
- W4366977979 hasConceptScore W4366977979C119857082 @default.
- W4366977979 hasConceptScore W4366977979C12174686 @default.
- W4366977979 hasConceptScore W4366977979C154945302 @default.
- W4366977979 hasConceptScore W4366977979C160735492 @default.
- W4366977979 hasConceptScore W4366977979C162324750 @default.
- W4366977979 hasConceptScore W4366977979C17744445 @default.
- W4366977979 hasConceptScore W4366977979C189708586 @default.
- W4366977979 hasConceptScore W4366977979C199539241 @default.
- W4366977979 hasConceptScore W4366977979C2522767166 @default.
- W4366977979 hasConceptScore W4366977979C2779473830 @default.
- W4366977979 hasConceptScore W4366977979C3019952477 @default.
- W4366977979 hasConceptScore W4366977979C38652104 @default.
- W4366977979 hasConceptScore W4366977979C41008148 @default.
- W4366977979 hasConceptScore W4366977979C45804977 @default.
- W4366977979 hasConceptScore W4366977979C50522688 @default.
- W4366977979 hasConceptScore W4366977979C63527458 @default.
- W4366977979 hasLocation W43669779791 @default.
- W4366977979 hasLocation W43669779792 @default.
- W4366977979 hasOpenAccess W4366977979 @default.
- W4366977979 hasPrimaryLocation W43669779791 @default.
- W4366977979 hasRelatedWork W2014723379 @default.