Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366978089> ?p ?o ?g. }
- W4366978089 endingPage "227" @default.
- W4366978089 startingPage "216" @default.
- W4366978089 abstract "In the prediction of time series, the echo state network (ESN) exhibits exclusive strengths and a unique training structure. Based on ESN model, a pooling activation algorithm consisting noise value and adjusted pooling algorithm is proposed to enrich the update strategy of the reservoir layer in ESN. The algorithm optimizes the distribution of reservoir layer nodes. And the nodes set will be more matched to the characteristics of the data. In addition, we introduce a more efficient and accurate compressed sensing technique based on the existing research. The novel compressed sensing technique reduces the amount of spatial computation of methods. The ESN model based on the above two techniques overcomes the limitations in traditional prediction. In the experimental part, the model is validated with different chaotic time series as well as multiple stocks, and the method shows its efficiency and accuracy in prediction." @default.
- W4366978089 created "2023-04-27" @default.
- W4366978089 creator A5001005426 @default.
- W4366978089 creator A5003095535 @default.
- W4366978089 creator A5010118587 @default.
- W4366978089 creator A5033462059 @default.
- W4366978089 creator A5034946941 @default.
- W4366978089 creator A5035696173 @default.
- W4366978089 date "2023-07-01" @default.
- W4366978089 modified "2023-10-16" @default.
- W4366978089 title "A novel time series prediction method based on pooling compressed sensing echo state network and its application in stock market" @default.
- W4366978089 cites W2001969261 @default.
- W4366978089 cites W2031934673 @default.
- W4366978089 cites W2069436097 @default.
- W4366978089 cites W2074477564 @default.
- W4366978089 cites W2161035945 @default.
- W4366978089 cites W2303172903 @default.
- W4366978089 cites W2618512726 @default.
- W4366978089 cites W2618530766 @default.
- W4366978089 cites W2744043447 @default.
- W4366978089 cites W2798413829 @default.
- W4366978089 cites W2808871417 @default.
- W4366978089 cites W2838248257 @default.
- W4366978089 cites W2946975908 @default.
- W4366978089 cites W2950032177 @default.
- W4366978089 cites W2973093569 @default.
- W4366978089 cites W2987928114 @default.
- W4366978089 cites W2989930392 @default.
- W4366978089 cites W3007389203 @default.
- W4366978089 cites W3009650506 @default.
- W4366978089 cites W3010938659 @default.
- W4366978089 cites W3012618928 @default.
- W4366978089 cites W3012621877 @default.
- W4366978089 cites W3014278717 @default.
- W4366978089 cites W3040211378 @default.
- W4366978089 cites W3110378470 @default.
- W4366978089 cites W3133957662 @default.
- W4366978089 cites W3157403163 @default.
- W4366978089 cites W4205546272 @default.
- W4366978089 cites W4225413933 @default.
- W4366978089 cites W4250955649 @default.
- W4366978089 doi "https://doi.org/10.1016/j.neunet.2023.04.031" @default.
- W4366978089 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37156216" @default.
- W4366978089 hasPublicationYear "2023" @default.
- W4366978089 type Work @default.
- W4366978089 citedByCount "0" @default.
- W4366978089 crossrefType "journal-article" @default.
- W4366978089 hasAuthorship W4366978089A5001005426 @default.
- W4366978089 hasAuthorship W4366978089A5003095535 @default.
- W4366978089 hasAuthorship W4366978089A5010118587 @default.
- W4366978089 hasAuthorship W4366978089A5033462059 @default.
- W4366978089 hasAuthorship W4366978089A5034946941 @default.
- W4366978089 hasAuthorship W4366978089A5035696173 @default.
- W4366978089 hasConcept C11413529 @default.
- W4366978089 hasConcept C119857082 @default.
- W4366978089 hasConcept C124101348 @default.
- W4366978089 hasConcept C124851039 @default.
- W4366978089 hasConcept C143724316 @default.
- W4366978089 hasConcept C147168706 @default.
- W4366978089 hasConcept C151406439 @default.
- W4366978089 hasConcept C151730666 @default.
- W4366978089 hasConcept C153180895 @default.
- W4366978089 hasConcept C154945302 @default.
- W4366978089 hasConcept C172025690 @default.
- W4366978089 hasConcept C2777052490 @default.
- W4366978089 hasConcept C41008148 @default.
- W4366978089 hasConcept C45374587 @default.
- W4366978089 hasConcept C50644808 @default.
- W4366978089 hasConcept C70437156 @default.
- W4366978089 hasConcept C86803240 @default.
- W4366978089 hasConceptScore W4366978089C11413529 @default.
- W4366978089 hasConceptScore W4366978089C119857082 @default.
- W4366978089 hasConceptScore W4366978089C124101348 @default.
- W4366978089 hasConceptScore W4366978089C124851039 @default.
- W4366978089 hasConceptScore W4366978089C143724316 @default.
- W4366978089 hasConceptScore W4366978089C147168706 @default.
- W4366978089 hasConceptScore W4366978089C151406439 @default.
- W4366978089 hasConceptScore W4366978089C151730666 @default.
- W4366978089 hasConceptScore W4366978089C153180895 @default.
- W4366978089 hasConceptScore W4366978089C154945302 @default.
- W4366978089 hasConceptScore W4366978089C172025690 @default.
- W4366978089 hasConceptScore W4366978089C2777052490 @default.
- W4366978089 hasConceptScore W4366978089C41008148 @default.
- W4366978089 hasConceptScore W4366978089C45374587 @default.
- W4366978089 hasConceptScore W4366978089C50644808 @default.
- W4366978089 hasConceptScore W4366978089C70437156 @default.
- W4366978089 hasConceptScore W4366978089C86803240 @default.
- W4366978089 hasFunder F4320321001 @default.
- W4366978089 hasFunder F4320324174 @default.
- W4366978089 hasLocation W43669780891 @default.
- W4366978089 hasLocation W43669780892 @default.
- W4366978089 hasOpenAccess W4366978089 @default.
- W4366978089 hasPrimaryLocation W43669780891 @default.
- W4366978089 hasRelatedWork W1877508920 @default.
- W4366978089 hasRelatedWork W1974708359 @default.
- W4366978089 hasRelatedWork W2043075591 @default.
- W4366978089 hasRelatedWork W2120684500 @default.
- W4366978089 hasRelatedWork W2242271381 @default.