Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366978166> ?p ?o ?g. }
- W4366978166 endingPage "e15672" @default.
- W4366978166 startingPage "e15672" @default.
- W4366978166 abstract "The drag based Savonius wind turbine (SWT) has shown immense potential for renewable power generation in built-up areas under complex urban wind conditions. While a series of studies have been conducted on improving SWT's efficiency, optimal performance has yet to be achieved using traditional design approaches such as experimental and/or computational fluid dynamics methods. Recently, artificial intelligence and machine learning have been widely used in design optimization. As such, an ANN-based virtual clone can be an alternative to traditional design methods for wind turbine performance determination. Therefore, the main goal of this study is to investigate whether ANN-based virtual clones are capable of determining the performance of SWTs with a shorter timeframe and minimal resources compared to traditional methods. To achieve the objective, an ANN-based virtual clone model is developed. Two sets of data (computational and experimental) are used to validate and determine the efficacy of the proposed ANN-based virtual clone model. Using experimental data, the model's fidelity is over 98%. The proposed model produces results in one-fifth the time of the existing simulation (based on the combined ANN + GA metamodel) method. The model also reveals the location of the dataset's optimized point for augmenting the turbine's performance." @default.
- W4366978166 created "2023-04-27" @default.
- W4366978166 creator A5033292475 @default.
- W4366978166 creator A5034211239 @default.
- W4366978166 creator A5047869983 @default.
- W4366978166 creator A5054411351 @default.
- W4366978166 creator A5061094603 @default.
- W4366978166 creator A5066390445 @default.
- W4366978166 creator A5078443680 @default.
- W4366978166 date "2023-05-01" @default.
- W4366978166 modified "2023-10-01" @default.
- W4366978166 title "Savonius wind turbine blade design and performance evaluation using ANN-based virtual clone: A new approach" @default.
- W4366978166 cites W1046407302 @default.
- W4366978166 cites W1963489369 @default.
- W4366978166 cites W1974262010 @default.
- W4366978166 cites W1977379824 @default.
- W4366978166 cites W1995341919 @default.
- W4366978166 cites W1995656419 @default.
- W4366978166 cites W2000652754 @default.
- W4366978166 cites W2007258576 @default.
- W4366978166 cites W2014492850 @default.
- W4366978166 cites W2015857439 @default.
- W4366978166 cites W2017469625 @default.
- W4366978166 cites W2038693783 @default.
- W4366978166 cites W2044331457 @default.
- W4366978166 cites W2049842835 @default.
- W4366978166 cites W2056219717 @default.
- W4366978166 cites W2073877855 @default.
- W4366978166 cites W2091680438 @default.
- W4366978166 cites W2097965246 @default.
- W4366978166 cites W2103559015 @default.
- W4366978166 cites W2115593938 @default.
- W4366978166 cites W2118471599 @default.
- W4366978166 cites W2132812673 @default.
- W4366978166 cites W2135815295 @default.
- W4366978166 cites W2136477929 @default.
- W4366978166 cites W2161717160 @default.
- W4366978166 cites W2511936841 @default.
- W4366978166 cites W2586330935 @default.
- W4366978166 cites W2607261802 @default.
- W4366978166 cites W2736274362 @default.
- W4366978166 cites W2765695879 @default.
- W4366978166 cites W2766447205 @default.
- W4366978166 cites W2778405580 @default.
- W4366978166 cites W2787207349 @default.
- W4366978166 cites W2795689295 @default.
- W4366978166 cites W2808010223 @default.
- W4366978166 cites W2892371073 @default.
- W4366978166 cites W2917534044 @default.
- W4366978166 cites W2919115771 @default.
- W4366978166 cites W2942234678 @default.
- W4366978166 cites W2965666325 @default.
- W4366978166 cites W2984987811 @default.
- W4366978166 cites W2993384776 @default.
- W4366978166 cites W3017301967 @default.
- W4366978166 cites W3023746602 @default.
- W4366978166 cites W3034272367 @default.
- W4366978166 cites W3035451094 @default.
- W4366978166 cites W3048432737 @default.
- W4366978166 cites W3096522881 @default.
- W4366978166 cites W3115288104 @default.
- W4366978166 cites W3122391591 @default.
- W4366978166 cites W3123844156 @default.
- W4366978166 cites W3142393622 @default.
- W4366978166 cites W3154548009 @default.
- W4366978166 cites W3165540181 @default.
- W4366978166 cites W3167886112 @default.
- W4366978166 cites W3216359034 @default.
- W4366978166 cites W4200497162 @default.
- W4366978166 cites W4200609088 @default.
- W4366978166 cites W4206257909 @default.
- W4366978166 cites W4206470503 @default.
- W4366978166 cites W4253667136 @default.
- W4366978166 cites W4285081909 @default.
- W4366978166 cites W4294042945 @default.
- W4366978166 cites W4313288665 @default.
- W4366978166 doi "https://doi.org/10.1016/j.heliyon.2023.e15672" @default.
- W4366978166 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37180909" @default.
- W4366978166 hasPublicationYear "2023" @default.
- W4366978166 type Work @default.
- W4366978166 citedByCount "0" @default.
- W4366978166 crossrefType "journal-article" @default.
- W4366978166 hasAuthorship W4366978166A5033292475 @default.
- W4366978166 hasAuthorship W4366978166A5034211239 @default.
- W4366978166 hasAuthorship W4366978166A5047869983 @default.
- W4366978166 hasAuthorship W4366978166A5054411351 @default.
- W4366978166 hasAuthorship W4366978166A5061094603 @default.
- W4366978166 hasAuthorship W4366978166A5066390445 @default.
- W4366978166 hasAuthorship W4366978166A5078443680 @default.
- W4366978166 hasBestOaLocation W43669781661 @default.
- W4366978166 hasConcept C119599485 @default.
- W4366978166 hasConcept C119857082 @default.
- W4366978166 hasConcept C127413603 @default.
- W4366978166 hasConcept C146978453 @default.
- W4366978166 hasConcept C199360897 @default.
- W4366978166 hasConcept C2778449969 @default.
- W4366978166 hasConcept C41008148 @default.
- W4366978166 hasConcept C44154836 @default.