Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366980166> ?p ?o ?g. }
- W4366980166 endingPage "106279" @default.
- W4366980166 startingPage "106279" @default.
- W4366980166 abstract "Diffusion coefficient (D12) is an important transport property in the petrochemical and pharmaceutical industries for the design and optimization of processes. The process of measuring the D12 for gas mixtures via an experimental approach is time-consuming and technically challenging. Consequently, many empirical models have been developed to circumvent these challenges. Though these models exhibit good agreement with the experiment, nonetheless, improvement is still needed in terms of increasing the model performance, and the flexibility of their applications because some of these models require extensive calculations to obtain their input parameters. Motivated by this, the work presents a simple and accurate approach for the estimation of diffusion coefficient using machine learning (ML) algorithms. This study employs support vector regression (SVR), Gaussian process regression (GPR), and artificial neural networks (ANN) to estimate the D12 of molecular gas systems over a wide range of temperature (293- 313K), and pressure (0.05–12.0 MPa). The proposed ML models were built using simple descriptors such as temperature, pressure, molar masses of constituent mixtures, and mole fractions of the gases. On the testing dataset, the following overall correlation coefficients were obtained 90.7 %, 99.1 %, and 99.97 % percent for the SVR, GPR, and ANN, respectively. The ANN model did better than the other ML algorithms presented in terms of its generalization capability. The authors believe that the ANN model presented is a viable alternative for the evaluation of the binary diffusion coefficient of gases due to the simplicity of the descriptors." @default.
- W4366980166 created "2023-04-27" @default.
- W4366980166 creator A5009871490 @default.
- W4366980166 creator A5043208531 @default.
- W4366980166 creator A5046875073 @default.
- W4366980166 creator A5049328735 @default.
- W4366980166 creator A5057140088 @default.
- W4366980166 date "2023-08-01" @default.
- W4366980166 modified "2023-09-30" @default.
- W4366980166 title "Development of machine learning models for the prediction of binary diffusion coefficients of gases" @default.
- W4366980166 cites W1836713156 @default.
- W4366980166 cites W1964357740 @default.
- W4366980166 cites W1973400405 @default.
- W4366980166 cites W1981215977 @default.
- W4366980166 cites W1982901894 @default.
- W4366980166 cites W1990837669 @default.
- W4366980166 cites W1997992893 @default.
- W4366980166 cites W2007971484 @default.
- W4366980166 cites W2012041883 @default.
- W4366980166 cites W2039935421 @default.
- W4366980166 cites W2043429040 @default.
- W4366980166 cites W2043508524 @default.
- W4366980166 cites W2047879328 @default.
- W4366980166 cites W2054855534 @default.
- W4366980166 cites W2075886908 @default.
- W4366980166 cites W2139212933 @default.
- W4366980166 cites W2152783510 @default.
- W4366980166 cites W2513727561 @default.
- W4366980166 cites W2582371055 @default.
- W4366980166 cites W2901312569 @default.
- W4366980166 cites W2910082081 @default.
- W4366980166 cites W2911368153 @default.
- W4366980166 cites W2920901284 @default.
- W4366980166 cites W2922494806 @default.
- W4366980166 cites W2965984115 @default.
- W4366980166 cites W3005330118 @default.
- W4366980166 cites W3042251286 @default.
- W4366980166 cites W3118776295 @default.
- W4366980166 cites W3124467590 @default.
- W4366980166 cites W3189164715 @default.
- W4366980166 cites W3204737361 @default.
- W4366980166 cites W4200615523 @default.
- W4366980166 cites W4239510810 @default.
- W4366980166 doi "https://doi.org/10.1016/j.engappai.2023.106279" @default.
- W4366980166 hasPublicationYear "2023" @default.
- W4366980166 type Work @default.
- W4366980166 citedByCount "1" @default.
- W4366980166 countsByYear W43669801662023 @default.
- W4366980166 crossrefType "journal-article" @default.
- W4366980166 hasAuthorship W4366980166A5009871490 @default.
- W4366980166 hasAuthorship W4366980166A5043208531 @default.
- W4366980166 hasAuthorship W4366980166A5046875073 @default.
- W4366980166 hasAuthorship W4366980166A5049328735 @default.
- W4366980166 hasAuthorship W4366980166A5057140088 @default.
- W4366980166 hasConcept C105795698 @default.
- W4366980166 hasConcept C11413529 @default.
- W4366980166 hasConcept C119857082 @default.
- W4366980166 hasConcept C121332964 @default.
- W4366980166 hasConcept C12267149 @default.
- W4366980166 hasConcept C134306372 @default.
- W4366980166 hasConcept C154945302 @default.
- W4366980166 hasConcept C177148314 @default.
- W4366980166 hasConcept C2780092901 @default.
- W4366980166 hasConcept C2780598303 @default.
- W4366980166 hasConcept C33923547 @default.
- W4366980166 hasConcept C41008148 @default.
- W4366980166 hasConcept C48372109 @default.
- W4366980166 hasConcept C50644808 @default.
- W4366980166 hasConcept C69357855 @default.
- W4366980166 hasConcept C81692654 @default.
- W4366980166 hasConcept C94375191 @default.
- W4366980166 hasConcept C97355855 @default.
- W4366980166 hasConceptScore W4366980166C105795698 @default.
- W4366980166 hasConceptScore W4366980166C11413529 @default.
- W4366980166 hasConceptScore W4366980166C119857082 @default.
- W4366980166 hasConceptScore W4366980166C121332964 @default.
- W4366980166 hasConceptScore W4366980166C12267149 @default.
- W4366980166 hasConceptScore W4366980166C134306372 @default.
- W4366980166 hasConceptScore W4366980166C154945302 @default.
- W4366980166 hasConceptScore W4366980166C177148314 @default.
- W4366980166 hasConceptScore W4366980166C2780092901 @default.
- W4366980166 hasConceptScore W4366980166C2780598303 @default.
- W4366980166 hasConceptScore W4366980166C33923547 @default.
- W4366980166 hasConceptScore W4366980166C41008148 @default.
- W4366980166 hasConceptScore W4366980166C48372109 @default.
- W4366980166 hasConceptScore W4366980166C50644808 @default.
- W4366980166 hasConceptScore W4366980166C69357855 @default.
- W4366980166 hasConceptScore W4366980166C81692654 @default.
- W4366980166 hasConceptScore W4366980166C94375191 @default.
- W4366980166 hasConceptScore W4366980166C97355855 @default.
- W4366980166 hasLocation W43669801661 @default.
- W4366980166 hasOpenAccess W4366980166 @default.
- W4366980166 hasPrimaryLocation W43669801661 @default.
- W4366980166 hasRelatedWork W1996541855 @default.
- W4366980166 hasRelatedWork W2355927362 @default.
- W4366980166 hasRelatedWork W2364959589 @default.
- W4366980166 hasRelatedWork W2946835660 @default.
- W4366980166 hasRelatedWork W2961085424 @default.