Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366981330> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4366981330 endingPage "110327" @default.
- W4366981330 startingPage "110327" @default.
- W4366981330 abstract "To handle emotional expressions in computer applications, Russell’s circumplex model has been useful for representing emotions according to valence and arousal. In SentiWordNet, the level of valence is automatically assigned to a large number of synsets (groups of synonyms in WordNet) using semi-supervised learning. However, when assigning the level of arousal, the existing method proposed for SentiWordNet reduces the accuracy of sentiment prediction. In this paper, we propose a block-segmentation vector for predicting the arousal levels of many synsets from a small number of labeled words using semi-supervised learning. We analyze the distribution of arousal and non-arousal words in a corpus of sentences by comparing it with the distribution of valence words. We address the problem that arousal level prediction fails when arousal and non-arousal words are mixed together in some sentences. To capture the features of such arousal and non-arousal words, we generate word vectors based on inverted indexes by block IDs, where the corpus is divided into blocks in the flow of sentences. In the evaluation experiment, we show that the results of arousal prediction with the block-segmentation vectors using semi-supervised learning outperform the results of the previous methods in SentiWordNet and SocialSent." @default.
- W4366981330 created "2023-04-27" @default.
- W4366981330 creator A5037354785 @default.
- W4366981330 creator A5055811124 @default.
- W4366981330 date "2023-07-01" @default.
- W4366981330 modified "2023-09-25" @default.
- W4366981330 title "Block-segmentation vectors for arousal prediction using semi-supervised learning" @default.
- W4366981330 cites W1980867644 @default.
- W4366981330 cites W2081580037 @default.
- W4366981330 cites W2134031328 @default.
- W4366981330 cites W2149628368 @default.
- W4366981330 cites W2150107436 @default.
- W4366981330 cites W2163652601 @default.
- W4366981330 cites W2168625136 @default.
- W4366981330 cites W2250539671 @default.
- W4366981330 cites W2798357113 @default.
- W4366981330 cites W2891424355 @default.
- W4366981330 cites W2949202718 @default.
- W4366981330 cites W2964325543 @default.
- W4366981330 cites W3012932209 @default.
- W4366981330 cites W3160930134 @default.
- W4366981330 cites W3161905446 @default.
- W4366981330 doi "https://doi.org/10.1016/j.asoc.2023.110327" @default.
- W4366981330 hasPublicationYear "2023" @default.
- W4366981330 type Work @default.
- W4366981330 citedByCount "0" @default.
- W4366981330 crossrefType "journal-article" @default.
- W4366981330 hasAuthorship W4366981330A5037354785 @default.
- W4366981330 hasAuthorship W4366981330A5055811124 @default.
- W4366981330 hasBestOaLocation W43669813302 @default.
- W4366981330 hasConcept C119857082 @default.
- W4366981330 hasConcept C121332964 @default.
- W4366981330 hasConcept C153180895 @default.
- W4366981330 hasConcept C154945302 @default.
- W4366981330 hasConcept C15744967 @default.
- W4366981330 hasConcept C168900304 @default.
- W4366981330 hasConcept C169760540 @default.
- W4366981330 hasConcept C204321447 @default.
- W4366981330 hasConcept C2524010 @default.
- W4366981330 hasConcept C2777210771 @default.
- W4366981330 hasConcept C28490314 @default.
- W4366981330 hasConcept C33923547 @default.
- W4366981330 hasConcept C36951298 @default.
- W4366981330 hasConcept C41008148 @default.
- W4366981330 hasConcept C62520636 @default.
- W4366981330 hasConcept C89600930 @default.
- W4366981330 hasConceptScore W4366981330C119857082 @default.
- W4366981330 hasConceptScore W4366981330C121332964 @default.
- W4366981330 hasConceptScore W4366981330C153180895 @default.
- W4366981330 hasConceptScore W4366981330C154945302 @default.
- W4366981330 hasConceptScore W4366981330C15744967 @default.
- W4366981330 hasConceptScore W4366981330C168900304 @default.
- W4366981330 hasConceptScore W4366981330C169760540 @default.
- W4366981330 hasConceptScore W4366981330C204321447 @default.
- W4366981330 hasConceptScore W4366981330C2524010 @default.
- W4366981330 hasConceptScore W4366981330C2777210771 @default.
- W4366981330 hasConceptScore W4366981330C28490314 @default.
- W4366981330 hasConceptScore W4366981330C33923547 @default.
- W4366981330 hasConceptScore W4366981330C36951298 @default.
- W4366981330 hasConceptScore W4366981330C41008148 @default.
- W4366981330 hasConceptScore W4366981330C62520636 @default.
- W4366981330 hasConceptScore W4366981330C89600930 @default.
- W4366981330 hasFunder F4320334764 @default.
- W4366981330 hasLocation W43669813301 @default.
- W4366981330 hasLocation W43669813302 @default.
- W4366981330 hasOpenAccess W4366981330 @default.
- W4366981330 hasPrimaryLocation W43669813301 @default.
- W4366981330 hasRelatedWork W1544055438 @default.
- W4366981330 hasRelatedWork W1987182177 @default.
- W4366981330 hasRelatedWork W2029072726 @default.
- W4366981330 hasRelatedWork W2085024878 @default.
- W4366981330 hasRelatedWork W2087245461 @default.
- W4366981330 hasRelatedWork W2736893848 @default.
- W4366981330 hasRelatedWork W2961085424 @default.
- W4366981330 hasRelatedWork W3003450285 @default.
- W4366981330 hasRelatedWork W4361008003 @default.
- W4366981330 hasRelatedWork W91913183 @default.
- W4366981330 hasVolume "142" @default.
- W4366981330 isParatext "false" @default.
- W4366981330 isRetracted "false" @default.
- W4366981330 workType "article" @default.