Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366981465> ?p ?o ?g. }
- W4366981465 endingPage "110324" @default.
- W4366981465 startingPage "110324" @default.
- W4366981465 abstract "Landslides are among the most devastating natural hazards, severely impacting human lives and damaging property and infrastructure. Landslide susceptibility maps, which help to identify which regions in a given area are at greater risk of a landslide occurring, are a key tool for effective mitigation. Research in this field has grown immensely, ranging from quantitative to deterministic approaches, with a recent surge in machine learning (ML)-based computational models. The development of ML models, in particular, has undergone a meteoritic rise in the last decade, contributing to the successful development of accurate susceptibility maps. However, despite their success, these models are rarely used by stakeholders owing to their “black box” nature. Hence, it is crucial to explain the results, thus providing greater transparency for the use of such models. To address this gap, the present work introduces the use of an ML-based explainable algorithm, SHapley Additive exPlanations (SHAP), for landslide susceptibility modeling. A convolutional neural network model was used conducted in the CheongJu region in South Korea. A total of 519 landslide locations were examined with 16 landslide-affected variables, of which 70% was used for training and 30% for testing, and the model achieved an accuracy of 89%. Further, the comparison was performed using Support Vector Machine mode, which achieved an accuracy of 84%. The SHAP plots showed variations in feature interactions for both landslide and non-landslide locations, thus providing more clarity as to how the model achieves a specific result. The SHAP dependence plots explained the relationship between altitude and slope, showing a negative relationship with altitude and a positive relationship with slope. This is the first use of an explainable ML model in landslide susceptibility modeling, and we argue that future works should include aspects of explainability to open up the possibility of developing a transferable artificial intelligence model." @default.
- W4366981465 created "2023-04-27" @default.
- W4366981465 creator A5030831009 @default.
- W4366981465 creator A5058731208 @default.
- W4366981465 creator A5059040421 @default.
- W4366981465 creator A5077439959 @default.
- W4366981465 date "2023-07-01" @default.
- W4366981465 modified "2023-10-18" @default.
- W4366981465 title "An explainable AI (XAI) model for landslide susceptibility modeling" @default.
- W4366981465 cites W1983676031 @default.
- W4366981465 cites W2015595462 @default.
- W4366981465 cites W2021765639 @default.
- W4366981465 cites W2034316820 @default.
- W4366981465 cites W2054512946 @default.
- W4366981465 cites W2076063813 @default.
- W4366981465 cites W2080134555 @default.
- W4366981465 cites W2112796928 @default.
- W4366981465 cites W2135194391 @default.
- W4366981465 cites W2158698691 @default.
- W4366981465 cites W2257979135 @default.
- W4366981465 cites W2266102527 @default.
- W4366981465 cites W2346466032 @default.
- W4366981465 cites W2461102195 @default.
- W4366981465 cites W2509507403 @default.
- W4366981465 cites W2567326027 @default.
- W4366981465 cites W2574978968 @default.
- W4366981465 cites W2580406454 @default.
- W4366981465 cites W2589351175 @default.
- W4366981465 cites W2730808126 @default.
- W4366981465 cites W2789555074 @default.
- W4366981465 cites W2792546905 @default.
- W4366981465 cites W2793831793 @default.
- W4366981465 cites W2794274366 @default.
- W4366981465 cites W2804735378 @default.
- W4366981465 cites W2895196240 @default.
- W4366981465 cites W2897555073 @default.
- W4366981465 cites W2909545512 @default.
- W4366981465 cites W2915483120 @default.
- W4366981465 cites W2919115771 @default.
- W4366981465 cites W2945976633 @default.
- W4366981465 cites W2963095307 @default.
- W4366981465 cites W2980376317 @default.
- W4366981465 cites W3001525167 @default.
- W4366981465 cites W3015351360 @default.
- W4366981465 cites W3032913569 @default.
- W4366981465 cites W3081183014 @default.
- W4366981465 cites W3087676330 @default.
- W4366981465 cites W3108410302 @default.
- W4366981465 cites W3129402291 @default.
- W4366981465 cites W3173991935 @default.
- W4366981465 cites W3181256602 @default.
- W4366981465 cites W3195433497 @default.
- W4366981465 cites W4211214389 @default.
- W4366981465 cites W4223472728 @default.
- W4366981465 cites W4239510810 @default.
- W4366981465 doi "https://doi.org/10.1016/j.asoc.2023.110324" @default.
- W4366981465 hasPublicationYear "2023" @default.
- W4366981465 type Work @default.
- W4366981465 citedByCount "6" @default.
- W4366981465 countsByYear W43669814652023 @default.
- W4366981465 crossrefType "journal-article" @default.
- W4366981465 hasAuthorship W4366981465A5030831009 @default.
- W4366981465 hasAuthorship W4366981465A5058731208 @default.
- W4366981465 hasAuthorship W4366981465A5059040421 @default.
- W4366981465 hasAuthorship W4366981465A5077439959 @default.
- W4366981465 hasBestOaLocation W43669814651 @default.
- W4366981465 hasConcept C111472728 @default.
- W4366981465 hasConcept C114793014 @default.
- W4366981465 hasConcept C119857082 @default.
- W4366981465 hasConcept C124101348 @default.
- W4366981465 hasConcept C127313418 @default.
- W4366981465 hasConcept C138885662 @default.
- W4366981465 hasConcept C154945302 @default.
- W4366981465 hasConcept C185592680 @default.
- W4366981465 hasConcept C186295008 @default.
- W4366981465 hasConcept C189950617 @default.
- W4366981465 hasConcept C205649164 @default.
- W4366981465 hasConcept C2776401178 @default.
- W4366981465 hasConcept C2777146004 @default.
- W4366981465 hasConcept C41008148 @default.
- W4366981465 hasConcept C41895202 @default.
- W4366981465 hasConcept C50644808 @default.
- W4366981465 hasConcept C55493867 @default.
- W4366981465 hasConcept C58640448 @default.
- W4366981465 hasConceptScore W4366981465C111472728 @default.
- W4366981465 hasConceptScore W4366981465C114793014 @default.
- W4366981465 hasConceptScore W4366981465C119857082 @default.
- W4366981465 hasConceptScore W4366981465C124101348 @default.
- W4366981465 hasConceptScore W4366981465C127313418 @default.
- W4366981465 hasConceptScore W4366981465C138885662 @default.
- W4366981465 hasConceptScore W4366981465C154945302 @default.
- W4366981465 hasConceptScore W4366981465C185592680 @default.
- W4366981465 hasConceptScore W4366981465C186295008 @default.
- W4366981465 hasConceptScore W4366981465C189950617 @default.
- W4366981465 hasConceptScore W4366981465C205649164 @default.
- W4366981465 hasConceptScore W4366981465C2776401178 @default.
- W4366981465 hasConceptScore W4366981465C2777146004 @default.
- W4366981465 hasConceptScore W4366981465C41008148 @default.