Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366987155> ?p ?o ?g. }
- W4366987155 endingPage "842" @default.
- W4366987155 startingPage "842" @default.
- W4366987155 abstract "Additive manufacturing is rapidly evolving and revolutionizing the fabrication of complex metal components with tunable properties. Machine learning and neural networks have emerged as powerful tools for process–property optimization in additive manufacturing. These techniques work well for the prediction of a single property but their applicability in optimizing multiple properties is limited. In the present work, an exclusive neural network is developed to demonstrate the potential of a single neural network in optimizing multiple part properties. The model is used to identify the optimal process parameter values for laser power, scan speed, and hatch spacing for the required surface roughness, relative density, microhardness, and dimensional accuracy in stainless steel parts. In-house-generated experimental data are used to train the model. The model has seven neurons in the hidden layer, which are selected using hyperparameter optimization. K-fold cross-validation is performed to ensure the robustness of the model, which results in a mean squared error of 0.0578 and R2 score of 0.59. The developed model is then used to predict the optimal process parameters corresponding to the user-required part properties. The model serves as a significant pre-processing step to identify the best parameters before printing, thus saving time and costs for repeated part fabrication. The study provides more insights into the usage of a single artificial neural network for the optimization of multiple properties of printed metal parts." @default.
- W4366987155 created "2023-04-27" @default.
- W4366987155 creator A5007426167 @default.
- W4366987155 creator A5060068719 @default.
- W4366987155 creator A5061323556 @default.
- W4366987155 creator A5080343347 @default.
- W4366987155 date "2023-04-25" @default.
- W4366987155 modified "2023-10-14" @default.
- W4366987155 title "Optimization of Process Parameters in Laser Powder Bed Fusion of SS 316L Parts Using Artificial Neural Networks" @default.
- W4366987155 cites W2003110013 @default.
- W4366987155 cites W2025309606 @default.
- W4366987155 cites W2076916224 @default.
- W4366987155 cites W2082674896 @default.
- W4366987155 cites W2087362212 @default.
- W4366987155 cites W2344816559 @default.
- W4366987155 cites W2480075336 @default.
- W4366987155 cites W2520502534 @default.
- W4366987155 cites W2750470740 @default.
- W4366987155 cites W2762176217 @default.
- W4366987155 cites W2766003497 @default.
- W4366987155 cites W2791687599 @default.
- W4366987155 cites W2794251843 @default.
- W4366987155 cites W2799328997 @default.
- W4366987155 cites W2884601396 @default.
- W4366987155 cites W2887233264 @default.
- W4366987155 cites W2898794469 @default.
- W4366987155 cites W2963556194 @default.
- W4366987155 cites W2976693703 @default.
- W4366987155 cites W2982873777 @default.
- W4366987155 cites W2985674265 @default.
- W4366987155 cites W3020008350 @default.
- W4366987155 cites W3032244307 @default.
- W4366987155 cites W3081529857 @default.
- W4366987155 cites W3090270307 @default.
- W4366987155 cites W3105647175 @default.
- W4366987155 cites W3118192827 @default.
- W4366987155 cites W3121460026 @default.
- W4366987155 cites W3125828283 @default.
- W4366987155 cites W3165056671 @default.
- W4366987155 cites W3197866560 @default.
- W4366987155 cites W4212944139 @default.
- W4366987155 cites W4283374139 @default.
- W4366987155 cites W4285013362 @default.
- W4366987155 cites W4286222578 @default.
- W4366987155 cites W4289313645 @default.
- W4366987155 cites W4296120901 @default.
- W4366987155 cites W4297973587 @default.
- W4366987155 cites W4306847923 @default.
- W4366987155 cites W4307943818 @default.
- W4366987155 cites W4308500704 @default.
- W4366987155 cites W4309786504 @default.
- W4366987155 cites W4313166440 @default.
- W4366987155 cites W4319160961 @default.
- W4366987155 doi "https://doi.org/10.3390/met13050842" @default.
- W4366987155 hasPublicationYear "2023" @default.
- W4366987155 type Work @default.
- W4366987155 citedByCount "1" @default.
- W4366987155 countsByYear W43669871552023 @default.
- W4366987155 crossrefType "journal-article" @default.
- W4366987155 hasAuthorship W4366987155A5007426167 @default.
- W4366987155 hasAuthorship W4366987155A5060068719 @default.
- W4366987155 hasAuthorship W4366987155A5061323556 @default.
- W4366987155 hasAuthorship W4366987155A5080343347 @default.
- W4366987155 hasBestOaLocation W43669871551 @default.
- W4366987155 hasConcept C104317684 @default.
- W4366987155 hasConcept C107365816 @default.
- W4366987155 hasConcept C111919701 @default.
- W4366987155 hasConcept C11413529 @default.
- W4366987155 hasConcept C115952470 @default.
- W4366987155 hasConcept C119857082 @default.
- W4366987155 hasConcept C120665830 @default.
- W4366987155 hasConcept C121332964 @default.
- W4366987155 hasConcept C122383733 @default.
- W4366987155 hasConcept C127413603 @default.
- W4366987155 hasConcept C136525101 @default.
- W4366987155 hasConcept C142724271 @default.
- W4366987155 hasConcept C154945302 @default.
- W4366987155 hasConcept C159985019 @default.
- W4366987155 hasConcept C185592680 @default.
- W4366987155 hasConcept C192562407 @default.
- W4366987155 hasConcept C200649887 @default.
- W4366987155 hasConcept C204787440 @default.
- W4366987155 hasConcept C26796778 @default.
- W4366987155 hasConcept C41008148 @default.
- W4366987155 hasConcept C50644808 @default.
- W4366987155 hasConcept C520434653 @default.
- W4366987155 hasConcept C55493867 @default.
- W4366987155 hasConcept C63479239 @default.
- W4366987155 hasConcept C71924100 @default.
- W4366987155 hasConcept C8642999 @default.
- W4366987155 hasConcept C87717796 @default.
- W4366987155 hasConcept C87976508 @default.
- W4366987155 hasConcept C98045186 @default.
- W4366987155 hasConceptScore W4366987155C104317684 @default.
- W4366987155 hasConceptScore W4366987155C107365816 @default.
- W4366987155 hasConceptScore W4366987155C111919701 @default.
- W4366987155 hasConceptScore W4366987155C11413529 @default.
- W4366987155 hasConceptScore W4366987155C115952470 @default.