Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366988411> ?p ?o ?g. }
- W4366988411 endingPage "3097" @default.
- W4366988411 startingPage "3097" @default.
- W4366988411 abstract "Occult breast cancer (OBC) is an uncommon malignant tumor and the prognosis and treatment of OBC remain controversial. Currently, there exists no accurate prognostic clinical model for OBC, and the treatment outcomes of chemotherapy and surgery in its different molecular subtypes are still unknown.The SEER database provided the data used for this study's analysis (2010-2019). To identify the prognostic variables for patients with ODC, we conducted Cox regression analysis and constructed prognostic models using six machine learning algorithms to predict overall survival (OS) of OBC patients. A series of validation methods, including calibration curve and area under the curve (AUC value) of receiver operating characteristic curve (ROC) were employed to validate the accuracy and reliability of the logistic regression (LR) models. The effectiveness of clinical application of the predictive models was validated using decision curve analysis (DCA). We also investigated the role of chemotherapy and surgery in OBC patients with different molecular subtypes, with the help of K-M survival analysis as well as propensity score matching, and these results were further validated by subgroup Cox analysis.The LR models performed best, with high precision and applicability, and they were proved to predict the OS of OBC patients in the most accurate manner (test set: 1-year AUC = 0.851, 3-year AUC = 0.790 and 5-year survival AUC = 0.824). Interestingly, we found that the N1 and N2 stage OBC patients had more favorable prognosis than N0 stage patients, but the N3 stage was similar to the N0 stage (OS: N0 vs. N1, HR = 0.6602, 95%CI 0.4568-0.9542, p < 0.05; N0 vs. N2, HR = 0.4716, 95%CI 0.2351-0.9464, p < 0.05; N0 vs. N3, HR = 0.96, 95%CI 0.6176-1.5844, p = 0.96). Patients aged >80 and distant metastases were also independent prognostic factors for OBC. In terms of treatment, our multivariate Cox regression analysis discovered that surgery and radiotherapy were both independent protective variables for OBC patients, but chemotherapy was not. We also found that chemotherapy significantly improved both OS and breast cancer-specific survival (BCSS) only in the HR-/HER2+ molecular subtype (OS: HR = 0.15, 95%CI 0.037-0.57, p < 0.01; BCSS: HR = 0.027, 95%CI 0.027-0.81, p < 0.05). However, surgery could help only the HR-/HER2+ and HR+/HER2- subtypes improve prognosis.We analyzed the clinical features and prognostic factors of OBC patients; meanwhile, machine learning prognostic models with high precision and applicability were constructed to predict their overall survival. The treatment results in different molecular subtypes suggested that primary surgery might improve the survival of HR+/HER2- and HR-/HER2+ subtypes, however, only the HR-/HER2+ subtype could benefit from chemotherapy. The necessity of surgery and chemotherapy needs to be carefully considered for OBC patients with other subtypes." @default.
- W4366988411 created "2023-04-27" @default.
- W4366988411 creator A5003463555 @default.
- W4366988411 creator A5005644762 @default.
- W4366988411 creator A5008868985 @default.
- W4366988411 creator A5010607811 @default.
- W4366988411 creator A5042120900 @default.
- W4366988411 creator A5055115466 @default.
- W4366988411 creator A5055437941 @default.
- W4366988411 creator A5058893221 @default.
- W4366988411 creator A5061345439 @default.
- W4366988411 creator A5067893575 @default.
- W4366988411 date "2023-04-24" @default.
- W4366988411 modified "2023-10-09" @default.
- W4366988411 title "Prognostic Models Using Machine Learning Algorithms and Treatment Outcomes of Occult Breast Cancer Patients" @default.
- W4366988411 cites W11013486 @default.
- W4366988411 cites W1972052277 @default.
- W4366988411 cites W2036802856 @default.
- W4366988411 cites W2063140844 @default.
- W4366988411 cites W2078839611 @default.
- W4366988411 cites W2104787607 @default.
- W4366988411 cites W2111547563 @default.
- W4366988411 cites W2113628073 @default.
- W4366988411 cites W2138357911 @default.
- W4366988411 cites W2166339706 @default.
- W4366988411 cites W2187656222 @default.
- W4366988411 cites W2606436201 @default.
- W4366988411 cites W2741652920 @default.
- W4366988411 cites W2778455075 @default.
- W4366988411 cites W2895391930 @default.
- W4366988411 cites W2917026610 @default.
- W4366988411 cites W2945732953 @default.
- W4366988411 cites W2982828200 @default.
- W4366988411 cites W2985042999 @default.
- W4366988411 cites W2985138570 @default.
- W4366988411 cites W3000453819 @default.
- W4366988411 cites W3013453316 @default.
- W4366988411 cites W3034503810 @default.
- W4366988411 cites W3075983469 @default.
- W4366988411 cites W3096605080 @default.
- W4366988411 cites W3204312334 @default.
- W4366988411 cites W4220800873 @default.
- W4366988411 cites W4226129792 @default.
- W4366988411 cites W4282930295 @default.
- W4366988411 cites W4297226578 @default.
- W4366988411 cites W4304014045 @default.
- W4366988411 cites W4309287936 @default.
- W4366988411 cites W4312269341 @default.
- W4366988411 cites W54502764 @default.
- W4366988411 cites W2620718134 @default.
- W4366988411 doi "https://doi.org/10.3390/jcm12093097" @default.
- W4366988411 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37176539" @default.
- W4366988411 hasPublicationYear "2023" @default.
- W4366988411 type Work @default.
- W4366988411 citedByCount "0" @default.
- W4366988411 crossrefType "journal-article" @default.
- W4366988411 hasAuthorship W4366988411A5003463555 @default.
- W4366988411 hasAuthorship W4366988411A5005644762 @default.
- W4366988411 hasAuthorship W4366988411A5008868985 @default.
- W4366988411 hasAuthorship W4366988411A5010607811 @default.
- W4366988411 hasAuthorship W4366988411A5042120900 @default.
- W4366988411 hasAuthorship W4366988411A5055115466 @default.
- W4366988411 hasAuthorship W4366988411A5055437941 @default.
- W4366988411 hasAuthorship W4366988411A5058893221 @default.
- W4366988411 hasAuthorship W4366988411A5061345439 @default.
- W4366988411 hasAuthorship W4366988411A5067893575 @default.
- W4366988411 hasBestOaLocation W43669884111 @default.
- W4366988411 hasConcept C10515644 @default.
- W4366988411 hasConcept C11413529 @default.
- W4366988411 hasConcept C119857082 @default.
- W4366988411 hasConcept C121608353 @default.
- W4366988411 hasConcept C126322002 @default.
- W4366988411 hasConcept C142724271 @default.
- W4366988411 hasConcept C143998085 @default.
- W4366988411 hasConcept C146357865 @default.
- W4366988411 hasConcept C151730666 @default.
- W4366988411 hasConcept C151956035 @default.
- W4366988411 hasConcept C154945302 @default.
- W4366988411 hasConcept C17923572 @default.
- W4366988411 hasConcept C204787440 @default.
- W4366988411 hasConcept C41008148 @default.
- W4366988411 hasConcept C50382708 @default.
- W4366988411 hasConcept C520017518 @default.
- W4366988411 hasConcept C530470458 @default.
- W4366988411 hasConcept C58471807 @default.
- W4366988411 hasConcept C71924100 @default.
- W4366988411 hasConcept C76318530 @default.
- W4366988411 hasConcept C86803240 @default.
- W4366988411 hasConceptScore W4366988411C10515644 @default.
- W4366988411 hasConceptScore W4366988411C11413529 @default.
- W4366988411 hasConceptScore W4366988411C119857082 @default.
- W4366988411 hasConceptScore W4366988411C121608353 @default.
- W4366988411 hasConceptScore W4366988411C126322002 @default.
- W4366988411 hasConceptScore W4366988411C142724271 @default.
- W4366988411 hasConceptScore W4366988411C143998085 @default.
- W4366988411 hasConceptScore W4366988411C146357865 @default.
- W4366988411 hasConceptScore W4366988411C151730666 @default.
- W4366988411 hasConceptScore W4366988411C151956035 @default.