Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366988445> ?p ?o ?g. }
- W4366988445 endingPage "033310242311692" @default.
- W4366988445 startingPage "033310242311692" @default.
- W4366988445 abstract "Triggers, premonitory symptoms and physiological changes occur in the preictal migraine phase and may be used in models for forecasting attacks. Machine learning is a promising option for such predictive analytics. The objective of this study was to explore the utility of machine learning to forecast migraine attacks based on preictal headache diary entries and simple physiological measurements.In a prospective development and usability study 18 patients with migraine completed 388 headache diary entries and self-administered app-based biofeedback sessions wirelessly measuring heart rate, peripheral skin temperature and muscle tension. Several standard machine learning architectures were constructed to forecast headache the subsequent day. Models were scored with area under the receiver operating characteristics curve.Two-hundred-and-ninety-five days were included in the predictive modelling. The top performing model, based on random forest classification, achieved an area under the receiver operating characteristics curve of 0.62 in a hold-out partition of the dataset.In this study we demonstrate the utility of using mobile health apps and wearables combined with machine learning to forecast headache. We argue that high-dimensional modelling may greatly improve forecasting and discuss important considerations for future design of forecasting models using machine learning and mobile health data." @default.
- W4366988445 created "2023-04-27" @default.
- W4366988445 creator A5015489507 @default.
- W4366988445 creator A5016058429 @default.
- W4366988445 creator A5020597757 @default.
- W4366988445 creator A5022891488 @default.
- W4366988445 creator A5036556452 @default.
- W4366988445 creator A5037113542 @default.
- W4366988445 creator A5042568991 @default.
- W4366988445 creator A5061329613 @default.
- W4366988445 creator A5065816264 @default.
- W4366988445 date "2023-04-25" @default.
- W4366988445 modified "2023-10-16" @default.
- W4366988445 title "Forecasting migraine with machine learning based on mobile phone diary and wearable data" @default.
- W4366988445 cites W1634965667 @default.
- W4366988445 cites W1974598221 @default.
- W4366988445 cites W1989565773 @default.
- W4366988445 cites W1995772795 @default.
- W4366988445 cites W2005128914 @default.
- W4366988445 cites W2005558043 @default.
- W4366988445 cites W2054369957 @default.
- W4366988445 cites W2078402149 @default.
- W4366988445 cites W2119950576 @default.
- W4366988445 cites W2126880843 @default.
- W4366988445 cites W2155892873 @default.
- W4366988445 cites W2158846562 @default.
- W4366988445 cites W2279073929 @default.
- W4366988445 cites W2553734051 @default.
- W4366988445 cites W2586831735 @default.
- W4366988445 cites W2735961620 @default.
- W4366988445 cites W2746815301 @default.
- W4366988445 cites W2775628457 @default.
- W4366988445 cites W2800186329 @default.
- W4366988445 cites W2801085490 @default.
- W4366988445 cites W2884502897 @default.
- W4366988445 cites W2895045876 @default.
- W4366988445 cites W2901469185 @default.
- W4366988445 cites W2947779813 @default.
- W4366988445 cites W2969870985 @default.
- W4366988445 cites W2973982753 @default.
- W4366988445 cites W2982953857 @default.
- W4366988445 cites W3092104956 @default.
- W4366988445 cites W3115158237 @default.
- W4366988445 cites W3170032457 @default.
- W4366988445 cites W4200097704 @default.
- W4366988445 doi "https://doi.org/10.1177/03331024231169244" @default.
- W4366988445 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37096352" @default.
- W4366988445 hasPublicationYear "2023" @default.
- W4366988445 type Work @default.
- W4366988445 citedByCount "1" @default.
- W4366988445 countsByYear W43669884452023 @default.
- W4366988445 crossrefType "journal-article" @default.
- W4366988445 hasAuthorship W4366988445A5015489507 @default.
- W4366988445 hasAuthorship W4366988445A5016058429 @default.
- W4366988445 hasAuthorship W4366988445A5020597757 @default.
- W4366988445 hasAuthorship W4366988445A5022891488 @default.
- W4366988445 hasAuthorship W4366988445A5036556452 @default.
- W4366988445 hasAuthorship W4366988445A5037113542 @default.
- W4366988445 hasAuthorship W4366988445A5042568991 @default.
- W4366988445 hasAuthorship W4366988445A5061329613 @default.
- W4366988445 hasAuthorship W4366988445A5065816264 @default.
- W4366988445 hasBestOaLocation W43669884451 @default.
- W4366988445 hasConcept C107457646 @default.
- W4366988445 hasConcept C118552586 @default.
- W4366988445 hasConcept C119857082 @default.
- W4366988445 hasConcept C149635348 @default.
- W4366988445 hasConcept C150594956 @default.
- W4366988445 hasConcept C154945302 @default.
- W4366988445 hasConcept C169258074 @default.
- W4366988445 hasConcept C170130773 @default.
- W4366988445 hasConcept C2522767166 @default.
- W4366988445 hasConcept C2778541695 @default.
- W4366988445 hasConcept C41008148 @default.
- W4366988445 hasConcept C58471807 @default.
- W4366988445 hasConcept C71924100 @default.
- W4366988445 hasConcept C79158427 @default.
- W4366988445 hasConceptScore W4366988445C107457646 @default.
- W4366988445 hasConceptScore W4366988445C118552586 @default.
- W4366988445 hasConceptScore W4366988445C119857082 @default.
- W4366988445 hasConceptScore W4366988445C149635348 @default.
- W4366988445 hasConceptScore W4366988445C150594956 @default.
- W4366988445 hasConceptScore W4366988445C154945302 @default.
- W4366988445 hasConceptScore W4366988445C169258074 @default.
- W4366988445 hasConceptScore W4366988445C170130773 @default.
- W4366988445 hasConceptScore W4366988445C2522767166 @default.
- W4366988445 hasConceptScore W4366988445C2778541695 @default.
- W4366988445 hasConceptScore W4366988445C41008148 @default.
- W4366988445 hasConceptScore W4366988445C58471807 @default.
- W4366988445 hasConceptScore W4366988445C71924100 @default.
- W4366988445 hasConceptScore W4366988445C79158427 @default.
- W4366988445 hasIssue "5" @default.
- W4366988445 hasLocation W43669884451 @default.
- W4366988445 hasLocation W43669884452 @default.
- W4366988445 hasLocation W43669884453 @default.
- W4366988445 hasLocation W43669884454 @default.
- W4366988445 hasOpenAccess W4366988445 @default.
- W4366988445 hasPrimaryLocation W43669884451 @default.
- W4366988445 hasRelatedWork W2911455822 @default.