Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366989186> ?p ?o ?g. }
- W4366989186 endingPage "4241" @default.
- W4366989186 startingPage "4241" @default.
- W4366989186 abstract "At present, SLAM is widely used in all kinds of dynamic scenes. It is difficult to distinguish dynamic targets in scenes using traditional visual SLAM. In the matching process, dynamic points are incorrectly added to the pose calculation with the camera, resulting in low precision and poor robustness in the pose estimation. This paper proposes a new dynamic scene visual SLAM algorithm based on adaptive threshold homogenized feature extraction and YOLOv5 object detection, named AHY-SLAM. This new method adds three new modules based on ORB-SLAM2: a keyframe selection module, a threshold calculation module, and an object detection module. The optical flow method is used to screen keyframes for each frame input in AHY-SLAM. An adaptive threshold is used to extract feature points for keyframes, and dynamic points are eliminated with YOLOv5. Compared with ORB-SLAM2, AHY-SLAM has significantly improved pose estimation accuracy over multiple dynamic scene sequences in the TUM open dataset, and the absolute pose estimation accuracy can be increased by up to 97%. Compared with other dynamic scene SLAM algorithms, the speed of AHY-SLAM is also significantly improved under a guarantee of acceptable accuracy." @default.
- W4366989186 created "2023-04-27" @default.
- W4366989186 creator A5004625661 @default.
- W4366989186 creator A5026192844 @default.
- W4366989186 creator A5042297620 @default.
- W4366989186 creator A5046937585 @default.
- W4366989186 creator A5072915437 @default.
- W4366989186 date "2023-04-24" @default.
- W4366989186 modified "2023-09-27" @default.
- W4366989186 title "AHY-SLAM: Toward Faster and More Accurate Visual SLAM in Dynamic Scenes Using Homogenized Feature Extraction and Object Detection Method" @default.
- W4366989186 cites W1690959182 @default.
- W4366989186 cites W1990012555 @default.
- W4366989186 cites W2020310389 @default.
- W4366989186 cites W2021851106 @default.
- W4366989186 cites W2025926687 @default.
- W4366989186 cites W2076917298 @default.
- W4366989186 cites W2085261163 @default.
- W4366989186 cites W2101703235 @default.
- W4366989186 cites W2109749443 @default.
- W4366989186 cites W2117228865 @default.
- W4366989186 cites W2151290401 @default.
- W4366989186 cites W2153653306 @default.
- W4366989186 cites W2177274842 @default.
- W4366989186 cites W2218842719 @default.
- W4366989186 cites W2267846010 @default.
- W4366989186 cites W2474281075 @default.
- W4366989186 cites W2735010494 @default.
- W4366989186 cites W2743390484 @default.
- W4366989186 cites W2745859992 @default.
- W4366989186 cites W2777280533 @default.
- W4366989186 cites W2794680924 @default.
- W4366989186 cites W2802671577 @default.
- W4366989186 cites W2883927138 @default.
- W4366989186 cites W2945487881 @default.
- W4366989186 cites W2950989657 @default.
- W4366989186 cites W2963150697 @default.
- W4366989186 cites W3000351820 @default.
- W4366989186 cites W3019533076 @default.
- W4366989186 cites W3022710784 @default.
- W4366989186 cites W3102327032 @default.
- W4366989186 cites W3103648783 @default.
- W4366989186 cites W3106458387 @default.
- W4366989186 cites W3120564201 @default.
- W4366989186 cites W3206086363 @default.
- W4366989186 cites W4205725812 @default.
- W4366989186 cites W4206573688 @default.
- W4366989186 cites W4295598625 @default.
- W4366989186 cites W4309725620 @default.
- W4366989186 cites W4319599773 @default.
- W4366989186 doi "https://doi.org/10.3390/s23094241" @default.
- W4366989186 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37177445" @default.
- W4366989186 hasPublicationYear "2023" @default.
- W4366989186 type Work @default.
- W4366989186 citedByCount "1" @default.
- W4366989186 countsByYear W43669891862023 @default.
- W4366989186 crossrefType "journal-article" @default.
- W4366989186 hasAuthorship W4366989186A5004625661 @default.
- W4366989186 hasAuthorship W4366989186A5026192844 @default.
- W4366989186 hasAuthorship W4366989186A5042297620 @default.
- W4366989186 hasAuthorship W4366989186A5046937585 @default.
- W4366989186 hasAuthorship W4366989186A5072915437 @default.
- W4366989186 hasBestOaLocation W43669891861 @default.
- W4366989186 hasConcept C104317684 @default.
- W4366989186 hasConcept C105795698 @default.
- W4366989186 hasConcept C108260229 @default.
- W4366989186 hasConcept C111919701 @default.
- W4366989186 hasConcept C115961682 @default.
- W4366989186 hasConcept C138885662 @default.
- W4366989186 hasConcept C153180895 @default.
- W4366989186 hasConcept C154945302 @default.
- W4366989186 hasConcept C165064840 @default.
- W4366989186 hasConcept C185592680 @default.
- W4366989186 hasConcept C19966478 @default.
- W4366989186 hasConcept C2776151529 @default.
- W4366989186 hasConcept C2776401178 @default.
- W4366989186 hasConcept C2781238097 @default.
- W4366989186 hasConcept C31972630 @default.
- W4366989186 hasConcept C33923547 @default.
- W4366989186 hasConcept C41008148 @default.
- W4366989186 hasConcept C41895202 @default.
- W4366989186 hasConcept C52102323 @default.
- W4366989186 hasConcept C52622490 @default.
- W4366989186 hasConcept C55493867 @default.
- W4366989186 hasConcept C63479239 @default.
- W4366989186 hasConcept C86369673 @default.
- W4366989186 hasConcept C90509273 @default.
- W4366989186 hasConcept C98045186 @default.
- W4366989186 hasConceptScore W4366989186C104317684 @default.
- W4366989186 hasConceptScore W4366989186C105795698 @default.
- W4366989186 hasConceptScore W4366989186C108260229 @default.
- W4366989186 hasConceptScore W4366989186C111919701 @default.
- W4366989186 hasConceptScore W4366989186C115961682 @default.
- W4366989186 hasConceptScore W4366989186C138885662 @default.
- W4366989186 hasConceptScore W4366989186C153180895 @default.
- W4366989186 hasConceptScore W4366989186C154945302 @default.
- W4366989186 hasConceptScore W4366989186C165064840 @default.
- W4366989186 hasConceptScore W4366989186C185592680 @default.
- W4366989186 hasConceptScore W4366989186C19966478 @default.