Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366990076> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4366990076 abstract "The development of compact and energy-efficient wearable sensors has led to an increase in the availability of biosignals. To effectively and efficiently analyze continuously recorded and multidimensional time series at scale, the ability to perform meaningful unsupervised data segmentation is an auspicious target. A common way to achieve this is to identify change-points within the time series as the segmentation basis. However, traditional change-point detection algorithms often come with drawbacks, limiting their real-world applicability. Notably, they generally rely on the complete time series to be available and thus cannot be used for real-time applications. Another common limitation is that they poorly (or cannot) handle the segmentation of multidimensional time series. Consequently, the main contribution of this work is to propose a novel unsupervised segmentation algorithm for multidimensional time series named Latent Space Unsupervised Semantic Segmentation (LS-USS), which was designed to easily work with both online and batch data. Latent Space Unsupervised Semantic Segmentation addresses the challenge of multivariate change-point detection by utilizing an autoencoder to learn a 1-dimensional latent space on which change-point detection is then performed. To address the challenge of real-time time series segmentation, this work introduces the Local Threshold Extraction Algorithm (LTEA) and a batch collapse algorithm. The batch collapse algorithm enables Latent Space Unsupervised Semantic Segmentation to process streaming data by dividing it into manageable batches, while Local Threshold Extraction Algorithm is employed to detect change-points in the time series whenever the computed metric by Latent Space Unsupervised Semantic Segmentation exceeds a predefined threshold. By using these algorithms in combination, our approach is able to accurately segment time series data in real-time, making it well-suited for applications where timely detection of changes is critical. When evaluating Latent Space Unsupervised Semantic Segmentation on a variety of real-world datasets the Latent Space Unsupervised Semantic Segmentation systematically achieves equal or better performance than other state-of-the-art change-point detection algorithms it is compared to in both offline and real-time settings." @default.
- W4366990076 created "2023-04-27" @default.
- W4366990076 creator A5005034364 @default.
- W4366990076 creator A5032297715 @default.
- W4366990076 creator A5071144214 @default.
- W4366990076 date "2023-04-25" @default.
- W4366990076 modified "2023-10-12" @default.
- W4366990076 title "Latent space unsupervised semantic segmentation" @default.
- W4366990076 cites W1513731586 @default.
- W4366990076 cites W1901129140 @default.
- W4366990076 cites W2026161366 @default.
- W4366990076 cites W2027390033 @default.
- W4366990076 cites W2028563099 @default.
- W4366990076 cites W2090985066 @default.
- W4366990076 cites W2099302229 @default.
- W4366990076 cites W2108328714 @default.
- W4366990076 cites W2122951085 @default.
- W4366990076 cites W2132138475 @default.
- W4366990076 cites W2157091296 @default.
- W4366990076 cites W2163922914 @default.
- W4366990076 cites W2167311767 @default.
- W4366990076 cites W2343142751 @default.
- W4366990076 cites W2515822248 @default.
- W4366990076 cites W2909693411 @default.
- W4366990076 cites W2917825635 @default.
- W4366990076 cites W2949544190 @default.
- W4366990076 cites W2988244882 @default.
- W4366990076 cites W2998047037 @default.
- W4366990076 cites W3010195458 @default.
- W4366990076 cites W3012919764 @default.
- W4366990076 cites W3017181332 @default.
- W4366990076 cites W3023780296 @default.
- W4366990076 cites W3131174451 @default.
- W4366990076 cites W3139265997 @default.
- W4366990076 cites W3169372665 @default.
- W4366990076 cites W3213696356 @default.
- W4366990076 cites W4312195930 @default.
- W4366990076 doi "https://doi.org/10.3389/fphys.2023.1151312" @default.
- W4366990076 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37179829" @default.
- W4366990076 hasPublicationYear "2023" @default.
- W4366990076 type Work @default.
- W4366990076 citedByCount "0" @default.
- W4366990076 crossrefType "journal-article" @default.
- W4366990076 hasAuthorship W4366990076A5005034364 @default.
- W4366990076 hasAuthorship W4366990076A5032297715 @default.
- W4366990076 hasAuthorship W4366990076A5071144214 @default.
- W4366990076 hasBestOaLocation W43669900761 @default.
- W4366990076 hasConcept C101738243 @default.
- W4366990076 hasConcept C108583219 @default.
- W4366990076 hasConcept C124504099 @default.
- W4366990076 hasConcept C153180895 @default.
- W4366990076 hasConcept C154945302 @default.
- W4366990076 hasConcept C41008148 @default.
- W4366990076 hasConcept C65885262 @default.
- W4366990076 hasConcept C73555534 @default.
- W4366990076 hasConcept C8038995 @default.
- W4366990076 hasConcept C89600930 @default.
- W4366990076 hasConceptScore W4366990076C101738243 @default.
- W4366990076 hasConceptScore W4366990076C108583219 @default.
- W4366990076 hasConceptScore W4366990076C124504099 @default.
- W4366990076 hasConceptScore W4366990076C153180895 @default.
- W4366990076 hasConceptScore W4366990076C154945302 @default.
- W4366990076 hasConceptScore W4366990076C41008148 @default.
- W4366990076 hasConceptScore W4366990076C65885262 @default.
- W4366990076 hasConceptScore W4366990076C73555534 @default.
- W4366990076 hasConceptScore W4366990076C8038995 @default.
- W4366990076 hasConceptScore W4366990076C89600930 @default.
- W4366990076 hasLocation W43669900761 @default.
- W4366990076 hasLocation W43669900762 @default.
- W4366990076 hasLocation W43669900763 @default.
- W4366990076 hasLocation W43669900764 @default.
- W4366990076 hasOpenAccess W4366990076 @default.
- W4366990076 hasPrimaryLocation W43669900761 @default.
- W4366990076 hasRelatedWork W134976887 @default.
- W4366990076 hasRelatedWork W1582206143 @default.
- W4366990076 hasRelatedWork W1840273037 @default.
- W4366990076 hasRelatedWork W2021143974 @default.
- W4366990076 hasRelatedWork W2052361277 @default.
- W4366990076 hasRelatedWork W2117933325 @default.
- W4366990076 hasRelatedWork W2292254049 @default.
- W4366990076 hasRelatedWork W2549765251 @default.
- W4366990076 hasRelatedWork W2592385986 @default.
- W4366990076 hasRelatedWork W2999247481 @default.
- W4366990076 hasVolume "14" @default.
- W4366990076 isParatext "false" @default.
- W4366990076 isRetracted "false" @default.
- W4366990076 workType "article" @default.