Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366990278> ?p ?o ?g. }
- W4366990278 endingPage "7121" @default.
- W4366990278 startingPage "7121" @default.
- W4366990278 abstract "Proper hazard recognition is fundamental to effective safety management in construction workplaces. Nevertheless, poor hazard recognition levels are a widespread and persistent problem in the construction industry. For example, recent investigations have demonstrated that a significant number of workplace hazards often remain unrecognized in construction workplaces. These unrecognized workplace hazards often remain unmanaged and can potentially translate into devastating and unexpected safety incidents. Therefore, interventions targeted at improving hazard recognition levels are foundational to enhancing safety management in construction workplaces. The main objective of the current investigation was to examine if ChatGPT, a language model recently launched by OpenAI, can aid hazard recognition when integrated into the curriculum of students pursuing a career in the construction industry. The investigation was carried out as an experimental effort with 42 students enrolled in the construction program at a major state university in the United States. First, prior to the introduction of ChatGPT as an intervention, the pre-intervention hazard recognition ability of the students was measured. Next, ChatGPT and its capabilities were introduced to the students in a classroom setting. Guidance was also offered on how the students could leverage ChatGPT to aid hazard recognition efforts. Finally, the post-intervention hazard recognition ability of the students was measured and compared against their earlier performance. The result suggests that ChatGPT can be leveraged to improve hazard recognition levels. Accordingly, integrating ChatGPT as part of safety education and training can yield benefits and prepare the next generation of construction professionals for industry success." @default.
- W4366990278 created "2023-04-27" @default.
- W4366990278 creator A5005326627 @default.
- W4366990278 creator A5014052642 @default.
- W4366990278 creator A5065824318 @default.
- W4366990278 creator A5085994972 @default.
- W4366990278 date "2023-04-24" @default.
- W4366990278 modified "2023-10-06" @default.
- W4366990278 title "Leveraging ChatGPT to Aid Construction Hazard Recognition and Support Safety Education and Training" @default.
- W4366990278 cites W1796953399 @default.
- W4366990278 cites W1964054852 @default.
- W4366990278 cites W1974170500 @default.
- W4366990278 cites W1978294177 @default.
- W4366990278 cites W1988045004 @default.
- W4366990278 cites W1993164674 @default.
- W4366990278 cites W1995943069 @default.
- W4366990278 cites W1997839992 @default.
- W4366990278 cites W2005199016 @default.
- W4366990278 cites W2006721151 @default.
- W4366990278 cites W2016505938 @default.
- W4366990278 cites W2017536488 @default.
- W4366990278 cites W2020900852 @default.
- W4366990278 cites W2021131183 @default.
- W4366990278 cites W2021445412 @default.
- W4366990278 cites W2027098050 @default.
- W4366990278 cites W2036316980 @default.
- W4366990278 cites W2039887324 @default.
- W4366990278 cites W2050227049 @default.
- W4366990278 cites W2056924876 @default.
- W4366990278 cites W2056959762 @default.
- W4366990278 cites W2068925510 @default.
- W4366990278 cites W2076136113 @default.
- W4366990278 cites W2077936944 @default.
- W4366990278 cites W2086134464 @default.
- W4366990278 cites W2102465738 @default.
- W4366990278 cites W2108095106 @default.
- W4366990278 cites W2113403731 @default.
- W4366990278 cites W2120197519 @default.
- W4366990278 cites W2122755080 @default.
- W4366990278 cites W2128573826 @default.
- W4366990278 cites W2138071109 @default.
- W4366990278 cites W2160725039 @default.
- W4366990278 cites W2169087330 @default.
- W4366990278 cites W2194639475 @default.
- W4366990278 cites W2244254702 @default.
- W4366990278 cites W2326192082 @default.
- W4366990278 cites W2463678108 @default.
- W4366990278 cites W2468324392 @default.
- W4366990278 cites W2480131998 @default.
- W4366990278 cites W2544918080 @default.
- W4366990278 cites W2553914714 @default.
- W4366990278 cites W2580884535 @default.
- W4366990278 cites W2727467269 @default.
- W4366990278 cites W2748379690 @default.
- W4366990278 cites W2760863174 @default.
- W4366990278 cites W2798974763 @default.
- W4366990278 cites W2900479853 @default.
- W4366990278 cites W2905256258 @default.
- W4366990278 cites W2938419209 @default.
- W4366990278 cites W2955026439 @default.
- W4366990278 cites W2969141511 @default.
- W4366990278 cites W2970318947 @default.
- W4366990278 cites W2973159036 @default.
- W4366990278 cites W2992545839 @default.
- W4366990278 cites W3038416236 @default.
- W4366990278 cites W3045243081 @default.
- W4366990278 cites W3094040507 @default.
- W4366990278 cites W3164611514 @default.
- W4366990278 cites W3170284987 @default.
- W4366990278 cites W4207084938 @default.
- W4366990278 cites W4221082158 @default.
- W4366990278 cites W4237032117 @default.
- W4366990278 cites W4283453830 @default.
- W4366990278 cites W4285719204 @default.
- W4366990278 cites W4288906845 @default.
- W4366990278 cites W4293248820 @default.
- W4366990278 cites W4302030570 @default.
- W4366990278 cites W4310917376 @default.
- W4366990278 cites W4313232683 @default.
- W4366990278 cites W4313262066 @default.
- W4366990278 cites W4313294616 @default.
- W4366990278 cites W4318257512 @default.
- W4366990278 cites W4318716950 @default.
- W4366990278 cites W4318931874 @default.
- W4366990278 cites W4319350602 @default.
- W4366990278 cites W4319662928 @default.
- W4366990278 cites W4319663047 @default.
- W4366990278 cites W4319773014 @default.
- W4366990278 cites W4320009668 @default.
- W4366990278 cites W4321499901 @default.
- W4366990278 cites W4323051504 @default.
- W4366990278 cites W4324046518 @default.
- W4366990278 doi "https://doi.org/10.3390/su15097121" @default.
- W4366990278 hasPublicationYear "2023" @default.
- W4366990278 type Work @default.
- W4366990278 citedByCount "3" @default.
- W4366990278 countsByYear W43669902782023 @default.
- W4366990278 crossrefType "journal-article" @default.