Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366990424> ?p ?o ?g. }
- W4366990424 endingPage "951" @default.
- W4366990424 startingPage "929" @default.
- W4366990424 abstract "This paper is concerned with new error analysis of a lowest-order backward Euler Galerkin-mixed finite element method for the time-dependent Ginzburg–Landau equations. The method is based on a commonly-used nonuniform approximation, in which a linear Lagrange element, the lowest-order Nédélec edge element, and the Raviart–Thomas face element are used for the order parameter , the magnetic field , and the magnetic potential , respectively. This mixed method has been widely used in practical simulations due to its low cost and ease of implementation. In the Ginzburg–Landau model, the order parameter is the most important variable, which indicates the state of the superconductor. An important feature of the method is the inconsistency of the approximation orders. A crucial question is how the first-order approximation of influences the accuracy of . The main purpose of this paper is to establish the second-order accuracy for the order parameter in a spatial direction, although the accuracy for is first order only. Previous analysis only gave the first-order convergence for all three variables due to certain artificial pollution involved in the analysis. Our analysis is based on a nonstandard quasi-projection for and the corresponding more precise estimates, including the -norm. With the quasi-projection, we prove that the lower-order approximation to does not pollute the accuracy of . Our numerical experiments confirm the optimal convergence of . The approach can be extended to many other multiphysics models." @default.
- W4366990424 created "2023-04-27" @default.
- W4366990424 creator A5014226512 @default.
- W4366990424 creator A5075117722 @default.
- W4366990424 date "2023-04-25" @default.
- W4366990424 modified "2023-10-16" @default.
- W4366990424 title "Optimal Analysis of Non-Uniform Galerkin-Mixed Finite Element Approximations to the Ginzburg–Landau Equations in Superconductivity" @default.
- W4366990424 cites W1492326914 @default.
- W4366990424 cites W1499787021 @default.
- W4366990424 cites W1624829794 @default.
- W4366990424 cites W1815692565 @default.
- W4366990424 cites W1996096362 @default.
- W4366990424 cites W2007739094 @default.
- W4366990424 cites W2009524125 @default.
- W4366990424 cites W2019658175 @default.
- W4366990424 cites W2019684971 @default.
- W4366990424 cites W2044749219 @default.
- W4366990424 cites W2045482933 @default.
- W4366990424 cites W2057547853 @default.
- W4366990424 cites W2059033901 @default.
- W4366990424 cites W2062279638 @default.
- W4366990424 cites W2073292648 @default.
- W4366990424 cites W2080063652 @default.
- W4366990424 cites W2080980858 @default.
- W4366990424 cites W2093234761 @default.
- W4366990424 cites W2093599174 @default.
- W4366990424 cites W2112311198 @default.
- W4366990424 cites W2112577082 @default.
- W4366990424 cites W2138704051 @default.
- W4366990424 cites W2141870784 @default.
- W4366990424 cites W2143783905 @default.
- W4366990424 cites W2289685042 @default.
- W4366990424 cites W2345572700 @default.
- W4366990424 cites W2496521767 @default.
- W4366990424 cites W2585820677 @default.
- W4366990424 cites W2804030256 @default.
- W4366990424 cites W2943133260 @default.
- W4366990424 cites W2963086421 @default.
- W4366990424 cites W2963653503 @default.
- W4366990424 cites W2963785114 @default.
- W4366990424 cites W2964153677 @default.
- W4366990424 cites W2996479640 @default.
- W4366990424 cites W2998623354 @default.
- W4366990424 cites W3006265089 @default.
- W4366990424 cites W3012238591 @default.
- W4366990424 cites W3033742403 @default.
- W4366990424 cites W3080182617 @default.
- W4366990424 cites W3081527979 @default.
- W4366990424 cites W3093805302 @default.
- W4366990424 cites W3103476862 @default.
- W4366990424 cites W3104479068 @default.
- W4366990424 cites W3149667697 @default.
- W4366990424 cites W3211142218 @default.
- W4366990424 cites W4245654886 @default.
- W4366990424 cites W4250220742 @default.
- W4366990424 cites W4252104256 @default.
- W4366990424 doi "https://doi.org/10.1137/22m1483670" @default.
- W4366990424 hasPublicationYear "2023" @default.
- W4366990424 type Work @default.
- W4366990424 citedByCount "1" @default.
- W4366990424 countsByYear W43669904242023 @default.
- W4366990424 crossrefType "journal-article" @default.
- W4366990424 hasAuthorship W4366990424A5014226512 @default.
- W4366990424 hasAuthorship W4366990424A5075117722 @default.
- W4366990424 hasConcept C11413529 @default.
- W4366990424 hasConcept C121332964 @default.
- W4366990424 hasConcept C126255220 @default.
- W4366990424 hasConcept C134306372 @default.
- W4366990424 hasConcept C135628077 @default.
- W4366990424 hasConcept C186899397 @default.
- W4366990424 hasConcept C202426404 @default.
- W4366990424 hasConcept C28826006 @default.
- W4366990424 hasConcept C33923547 @default.
- W4366990424 hasConcept C57493831 @default.
- W4366990424 hasConcept C65557600 @default.
- W4366990424 hasConcept C92244383 @default.
- W4366990424 hasConcept C96716743 @default.
- W4366990424 hasConcept C97355855 @default.
- W4366990424 hasConceptScore W4366990424C11413529 @default.
- W4366990424 hasConceptScore W4366990424C121332964 @default.
- W4366990424 hasConceptScore W4366990424C126255220 @default.
- W4366990424 hasConceptScore W4366990424C134306372 @default.
- W4366990424 hasConceptScore W4366990424C135628077 @default.
- W4366990424 hasConceptScore W4366990424C186899397 @default.
- W4366990424 hasConceptScore W4366990424C202426404 @default.
- W4366990424 hasConceptScore W4366990424C28826006 @default.
- W4366990424 hasConceptScore W4366990424C33923547 @default.
- W4366990424 hasConceptScore W4366990424C57493831 @default.
- W4366990424 hasConceptScore W4366990424C65557600 @default.
- W4366990424 hasConceptScore W4366990424C92244383 @default.
- W4366990424 hasConceptScore W4366990424C96716743 @default.
- W4366990424 hasConceptScore W4366990424C97355855 @default.
- W4366990424 hasFunder F4320309893 @default.
- W4366990424 hasFunder F4320321001 @default.
- W4366990424 hasIssue "2" @default.
- W4366990424 hasLocation W43669904241 @default.
- W4366990424 hasOpenAccess W4366990424 @default.
- W4366990424 hasPrimaryLocation W43669904241 @default.