Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366990559> ?p ?o ?g. }
- W4366990559 abstract "The understating of natural resources and hazards is very fundamental from spatial perspective to reduce loss of resource and human lives. For this, the main aim of the current research is to synthesize the three natural resources (groundwater, wetland, and forest) into one multi-resource (MR) potentiality map and three natural hazards (flood, landslide, and shoreline erosion) into one multi-hazard (MH) susceptibility map. To achieve this goal, several inventories, geo-environmental factors, satellite bands, and indices have been taken as input data sets. Random forest (RF) model has been considered for individual mapping (except shoreline erosion mapping) due to its high precision. For shoreline erosion mapping, digital shoreline analysis system (DSAS) model has been employed. The accuracies of the model have been determined from the area under receiver operating characteristic (AUROC) curve, producer accuracy (PA), and user accuracy (UA). RF model has more than 90% prediction accuracy in different resource and hazard mapping, whereas for the forest mapping, PA and UA are 90% and 80%, respectively. The results of this study for multi-resource mapping show forest (24.05%) and groundwater (22.28%) as the major resources, whereas flood (17.27%) is the most destructive in comparison with other hazards. The multi-resource and multi-hazard maps of the research area provide an important tool to land managers and policymakers for sustainable development and management." @default.
- W4366990559 created "2023-04-27" @default.
- W4366990559 creator A5001958651 @default.
- W4366990559 creator A5012811028 @default.
- W4366990559 creator A5016420296 @default.
- W4366990559 creator A5034044427 @default.
- W4366990559 creator A5081841595 @default.
- W4366990559 date "2023-04-25" @default.
- W4366990559 modified "2023-10-05" @default.
- W4366990559 title "Multi-resource potentiality and multi-hazard susceptibility assessments of the central west coast of India applying machine learning and geospatial techniques" @default.
- W4366990559 cites W1516596134 @default.
- W4366990559 cites W1949968737 @default.
- W4366990559 cites W1963858441 @default.
- W4366990559 cites W1977351805 @default.
- W4366990559 cites W1987082030 @default.
- W4366990559 cites W2003727159 @default.
- W4366990559 cites W2013499761 @default.
- W4366990559 cites W2027442956 @default.
- W4366990559 cites W2046113982 @default.
- W4366990559 cites W2049647840 @default.
- W4366990559 cites W2143296882 @default.
- W4366990559 cites W2313572396 @default.
- W4366990559 cites W2397914484 @default.
- W4366990559 cites W2485193819 @default.
- W4366990559 cites W2504746077 @default.
- W4366990559 cites W2566693347 @default.
- W4366990559 cites W2640557513 @default.
- W4366990559 cites W2772365113 @default.
- W4366990559 cites W2776146695 @default.
- W4366990559 cites W2792211776 @default.
- W4366990559 cites W2797310831 @default.
- W4366990559 cites W2797779281 @default.
- W4366990559 cites W2890248767 @default.
- W4366990559 cites W2907200564 @default.
- W4366990559 cites W2909193898 @default.
- W4366990559 cites W2911964244 @default.
- W4366990559 cites W2915483120 @default.
- W4366990559 cites W2924738385 @default.
- W4366990559 cites W2947706525 @default.
- W4366990559 cites W2957135778 @default.
- W4366990559 cites W2962207954 @default.
- W4366990559 cites W2969608668 @default.
- W4366990559 cites W2969945043 @default.
- W4366990559 cites W2991604971 @default.
- W4366990559 cites W3008924545 @default.
- W4366990559 cites W3013306393 @default.
- W4366990559 cites W3014372673 @default.
- W4366990559 cites W3015539238 @default.
- W4366990559 cites W3028081629 @default.
- W4366990559 cites W3034300825 @default.
- W4366990559 cites W3045040272 @default.
- W4366990559 cites W3048827138 @default.
- W4366990559 cites W3081005900 @default.
- W4366990559 cites W3090020533 @default.
- W4366990559 cites W3099802519 @default.
- W4366990559 cites W3109171118 @default.
- W4366990559 cites W3129718208 @default.
- W4366990559 cites W3139151486 @default.
- W4366990559 cites W3183537341 @default.
- W4366990559 cites W3194810025 @default.
- W4366990559 cites W3194914309 @default.
- W4366990559 cites W3196556441 @default.
- W4366990559 cites W3217264867 @default.
- W4366990559 cites W4200223653 @default.
- W4366990559 cites W4205159662 @default.
- W4366990559 cites W4210281388 @default.
- W4366990559 cites W4223610633 @default.
- W4366990559 cites W4234314512 @default.
- W4366990559 cites W4246810942 @default.
- W4366990559 cites W4254413400 @default.
- W4366990559 cites W4299689471 @default.
- W4366990559 cites W4312056410 @default.
- W4366990559 cites W4321502968 @default.
- W4366990559 doi "https://doi.org/10.1007/s12665-023-10901-7" @default.
- W4366990559 hasPublicationYear "2023" @default.
- W4366990559 type Work @default.
- W4366990559 citedByCount "1" @default.
- W4366990559 crossrefType "journal-article" @default.
- W4366990559 hasAuthorship W4366990559A5001958651 @default.
- W4366990559 hasAuthorship W4366990559A5012811028 @default.
- W4366990559 hasAuthorship W4366990559A5016420296 @default.
- W4366990559 hasAuthorship W4366990559A5034044427 @default.
- W4366990559 hasAuthorship W4366990559A5081841595 @default.
- W4366990559 hasBestOaLocation W43669905592 @default.
- W4366990559 hasConcept C107826830 @default.
- W4366990559 hasConcept C111368507 @default.
- W4366990559 hasConcept C127313418 @default.
- W4366990559 hasConcept C152382732 @default.
- W4366990559 hasConcept C153294291 @default.
- W4366990559 hasConcept C166957645 @default.
- W4366990559 hasConcept C187320778 @default.
- W4366990559 hasConcept C18903297 @default.
- W4366990559 hasConcept C205649164 @default.
- W4366990559 hasConcept C206345919 @default.
- W4366990559 hasConcept C29985473 @default.
- W4366990559 hasConcept C31258907 @default.
- W4366990559 hasConcept C39410599 @default.
- W4366990559 hasConcept C39432304 @default.
- W4366990559 hasConcept C41008148 @default.
- W4366990559 hasConcept C41856607 @default.