Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366990561> ?p ?o ?g. }
- W4366990561 endingPage "5317" @default.
- W4366990561 startingPage "5317" @default.
- W4366990561 abstract "Coal has played an important role in the economies of many countries worldwide, which has resulted in increased surface and underground mining in countries with large coal reserves, such as China and the United States. However, coal mining is subject to frequent accidents and predictable risks that have, in some instances, led to the loss of lives, disabilities, equipment damage, etc. The assessment of risk factors in underground mines is therefore considered a commendable initiative. Therefore, this research aimed to develop an efficient model for assessing and predicting safety risk factors in underground mines using existing data from the Xiaonan coal mine. A model for evaluating safety risks in underground coal mines was developed based on the optimized particle swarm optimization-backpropagation (PSO-BP) neural network. The results showed that the PSO-BP neural network model for safety risk assessment in underground coal mines was the most reliable and effective, with MSE, MAPE, and R2 values of 2.0 × 10−4, 4.3, and 0.92, respectively. Therefore, the study proposed the neural network model PSO-BP for underground coal mine safety risk assessment. The results of this study can be adopted by decision-makers for evaluating and predicting risk factors in underground coal mines." @default.
- W4366990561 created "2023-04-27" @default.
- W4366990561 creator A5020977961 @default.
- W4366990561 creator A5049227055 @default.
- W4366990561 creator A5058950270 @default.
- W4366990561 creator A5059272236 @default.
- W4366990561 creator A5076359094 @default.
- W4366990561 date "2023-04-24" @default.
- W4366990561 modified "2023-10-14" @default.
- W4366990561 title "Application of an Optimized PSO-BP Neural Network to the Assessment and Prediction of Underground Coal Mine Safety Risk Factors" @default.
- W4366990561 cites W1498436455 @default.
- W4366990561 cites W1538237995 @default.
- W4366990561 cites W1786686177 @default.
- W4366990561 cites W194202718 @default.
- W4366990561 cites W1976937131 @default.
- W4366990561 cites W1979373126 @default.
- W4366990561 cites W2000268559 @default.
- W4366990561 cites W2009068273 @default.
- W4366990561 cites W2017114519 @default.
- W4366990561 cites W2018700453 @default.
- W4366990561 cites W2021826571 @default.
- W4366990561 cites W2029631366 @default.
- W4366990561 cites W2041456351 @default.
- W4366990561 cites W2043492077 @default.
- W4366990561 cites W2048552474 @default.
- W4366990561 cites W2061339181 @default.
- W4366990561 cites W2062151674 @default.
- W4366990561 cites W2072462334 @default.
- W4366990561 cites W2079951033 @default.
- W4366990561 cites W2131613989 @default.
- W4366990561 cites W2159955170 @default.
- W4366990561 cites W2167026704 @default.
- W4366990561 cites W2169245194 @default.
- W4366990561 cites W2171107890 @default.
- W4366990561 cites W2395449987 @default.
- W4366990561 cites W2508577522 @default.
- W4366990561 cites W2792961021 @default.
- W4366990561 cites W2895006707 @default.
- W4366990561 cites W2905350361 @default.
- W4366990561 cites W2933150416 @default.
- W4366990561 cites W2944951060 @default.
- W4366990561 cites W2955404827 @default.
- W4366990561 cites W2956572225 @default.
- W4366990561 cites W2971518682 @default.
- W4366990561 cites W2977398569 @default.
- W4366990561 cites W2983509179 @default.
- W4366990561 cites W2991429807 @default.
- W4366990561 cites W3029383985 @default.
- W4366990561 cites W3089087699 @default.
- W4366990561 cites W3096990285 @default.
- W4366990561 cites W3111062507 @default.
- W4366990561 cites W3115290671 @default.
- W4366990561 cites W3125387313 @default.
- W4366990561 cites W3170945786 @default.
- W4366990561 cites W3182706339 @default.
- W4366990561 cites W3193616190 @default.
- W4366990561 cites W3196663332 @default.
- W4366990561 cites W3196866731 @default.
- W4366990561 cites W3203586449 @default.
- W4366990561 cites W3208444626 @default.
- W4366990561 cites W3216741772 @default.
- W4366990561 cites W4205973196 @default.
- W4366990561 cites W4210420941 @default.
- W4366990561 cites W4210435842 @default.
- W4366990561 cites W4221112438 @default.
- W4366990561 cites W4221129230 @default.
- W4366990561 cites W4225127162 @default.
- W4366990561 cites W4226254479 @default.
- W4366990561 cites W4229058026 @default.
- W4366990561 cites W4283271909 @default.
- W4366990561 cites W4288046314 @default.
- W4366990561 cites W4292112078 @default.
- W4366990561 cites W4292253853 @default.
- W4366990561 cites W4293027896 @default.
- W4366990561 cites W4293038537 @default.
- W4366990561 cites W4293176183 @default.
- W4366990561 cites W4296082234 @default.
- W4366990561 cites W4302425312 @default.
- W4366990561 cites W4313420739 @default.
- W4366990561 cites W4313829892 @default.
- W4366990561 doi "https://doi.org/10.3390/app13095317" @default.
- W4366990561 hasPublicationYear "2023" @default.
- W4366990561 type Work @default.
- W4366990561 citedByCount "2" @default.
- W4366990561 countsByYear W43669905612023 @default.
- W4366990561 crossrefType "journal-article" @default.
- W4366990561 hasAuthorship W4366990561A5020977961 @default.
- W4366990561 hasAuthorship W4366990561A5049227055 @default.
- W4366990561 hasAuthorship W4366990561A5058950270 @default.
- W4366990561 hasAuthorship W4366990561A5059272236 @default.
- W4366990561 hasAuthorship W4366990561A5076359094 @default.
- W4366990561 hasBestOaLocation W43669905611 @default.
- W4366990561 hasConcept C108615695 @default.
- W4366990561 hasConcept C119857082 @default.
- W4366990561 hasConcept C12174686 @default.
- W4366990561 hasConcept C127413603 @default.
- W4366990561 hasConcept C154945302 @default.
- W4366990561 hasConcept C155032097 @default.