Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366990766> ?p ?o ?g. }
- W4366990766 endingPage "936" @default.
- W4366990766 startingPage "936" @default.
- W4366990766 abstract "Rice is a staple food for roughly half of the world’s population. Some farmers prefer rice cultivation to other crops because rice can thrive in a wide range of environments. Several studies have found that about 70% of India’s population relies on agriculture in some way and that agribusiness accounts for about 17% of India’s GDP. In India, rice is one of the most important crops, but it is vulnerable to a number of diseases throughout the growing process. Farmers’ manual identification of these diseases is highly inaccurate due to their lack of medical expertise. Recent advances in deep learning models show that automatic image recognition systems can be extremely useful in such situations. In this paper, we propose a suitable and effective system for predicting diseases in rice leaves using a number of different deep learning techniques. Images of rice leaf diseases were gathered and processed to fulfil the algorithmic requirements. Initially, features were extracted by using 32 pre-trained models, and then we classified the images of rice leaf diseases such as bacterial blight, blast, and brown spot with numerous machine learning and ensemble learning classifiers and compared the results. The proposed procedure works better than other methods that are currently used. It achieves 90–91% identification accuracy and other performance parameters such as precision, Recall Rate, F1-score, Matthews Coefficient, and Kappa Statistics on a normal data set. Even after the segmentation process, the value reaches 93–94% for model EfficientNetV2B3 with ET and HGB classifiers. The proposed model efficiently recognises rice leaf diseases with an accuracy of 94%. The experimental results show that the proposed procedure is valid and effective for identifying rice diseases." @default.
- W4366990766 created "2023-04-27" @default.
- W4366990766 creator A5000303741 @default.
- W4366990766 creator A5004131475 @default.
- W4366990766 creator A5043722627 @default.
- W4366990766 creator A5050123276 @default.
- W4366990766 creator A5071946897 @default.
- W4366990766 creator A5073215738 @default.
- W4366990766 creator A5079524430 @default.
- W4366990766 date "2023-04-24" @default.
- W4366990766 modified "2023-10-09" @default.
- W4366990766 title "Pre-Trained Deep Neural Network-Based Features Selection Supported Machine Learning for Rice Leaf Disease Classification" @default.
- W4366990766 cites W2731165298 @default.
- W4366990766 cites W2736026939 @default.
- W4366990766 cites W2769136071 @default.
- W4366990766 cites W2778714099 @default.
- W4366990766 cites W2896811665 @default.
- W4366990766 cites W2904583950 @default.
- W4366990766 cites W2906948457 @default.
- W4366990766 cites W2909278479 @default.
- W4366990766 cites W2915159483 @default.
- W4366990766 cites W3003067960 @default.
- W4366990766 cites W3015562698 @default.
- W4366990766 cites W3016620973 @default.
- W4366990766 cites W3017125705 @default.
- W4366990766 cites W3032025624 @default.
- W4366990766 cites W3033196717 @default.
- W4366990766 cites W3036085849 @default.
- W4366990766 cites W3093956116 @default.
- W4366990766 cites W3108636283 @default.
- W4366990766 cites W3109385023 @default.
- W4366990766 cites W3112760320 @default.
- W4366990766 cites W3119027282 @default.
- W4366990766 cites W3119322650 @default.
- W4366990766 cites W3148765418 @default.
- W4366990766 cites W3155943113 @default.
- W4366990766 cites W3156165270 @default.
- W4366990766 cites W3158527823 @default.
- W4366990766 cites W3163327790 @default.
- W4366990766 cites W3187029772 @default.
- W4366990766 cites W4283212640 @default.
- W4366990766 cites W4289792861 @default.
- W4366990766 cites W4311628535 @default.
- W4366990766 cites W4312435661 @default.
- W4366990766 cites W4312869614 @default.
- W4366990766 doi "https://doi.org/10.3390/agriculture13050936" @default.
- W4366990766 hasPublicationYear "2023" @default.
- W4366990766 type Work @default.
- W4366990766 citedByCount "8" @default.
- W4366990766 countsByYear W43669907662023 @default.
- W4366990766 crossrefType "journal-article" @default.
- W4366990766 hasAuthorship W4366990766A5000303741 @default.
- W4366990766 hasAuthorship W4366990766A5004131475 @default.
- W4366990766 hasAuthorship W4366990766A5043722627 @default.
- W4366990766 hasAuthorship W4366990766A5050123276 @default.
- W4366990766 hasAuthorship W4366990766A5071946897 @default.
- W4366990766 hasAuthorship W4366990766A5073215738 @default.
- W4366990766 hasAuthorship W4366990766A5079524430 @default.
- W4366990766 hasBestOaLocation W43669907661 @default.
- W4366990766 hasConcept C108583219 @default.
- W4366990766 hasConcept C119857082 @default.
- W4366990766 hasConcept C144024400 @default.
- W4366990766 hasConcept C149923435 @default.
- W4366990766 hasConcept C153180895 @default.
- W4366990766 hasConcept C154945302 @default.
- W4366990766 hasConcept C169258074 @default.
- W4366990766 hasConcept C2780034373 @default.
- W4366990766 hasConcept C2908647359 @default.
- W4366990766 hasConcept C2992726227 @default.
- W4366990766 hasConcept C41008148 @default.
- W4366990766 hasConcept C50644808 @default.
- W4366990766 hasConcept C6557445 @default.
- W4366990766 hasConcept C86803240 @default.
- W4366990766 hasConceptScore W4366990766C108583219 @default.
- W4366990766 hasConceptScore W4366990766C119857082 @default.
- W4366990766 hasConceptScore W4366990766C144024400 @default.
- W4366990766 hasConceptScore W4366990766C149923435 @default.
- W4366990766 hasConceptScore W4366990766C153180895 @default.
- W4366990766 hasConceptScore W4366990766C154945302 @default.
- W4366990766 hasConceptScore W4366990766C169258074 @default.
- W4366990766 hasConceptScore W4366990766C2780034373 @default.
- W4366990766 hasConceptScore W4366990766C2908647359 @default.
- W4366990766 hasConceptScore W4366990766C2992726227 @default.
- W4366990766 hasConceptScore W4366990766C41008148 @default.
- W4366990766 hasConceptScore W4366990766C50644808 @default.
- W4366990766 hasConceptScore W4366990766C6557445 @default.
- W4366990766 hasConceptScore W4366990766C86803240 @default.
- W4366990766 hasFunder F4320321145 @default.
- W4366990766 hasIssue "5" @default.
- W4366990766 hasLocation W43669907661 @default.
- W4366990766 hasOpenAccess W4366990766 @default.
- W4366990766 hasPrimaryLocation W43669907661 @default.
- W4366990766 hasRelatedWork W2968586400 @default.
- W4366990766 hasRelatedWork W3211546796 @default.
- W4366990766 hasRelatedWork W4223564025 @default.
- W4366990766 hasRelatedWork W4223943233 @default.
- W4366990766 hasRelatedWork W4281616679 @default.
- W4366990766 hasRelatedWork W4312200629 @default.