Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366990773> ?p ?o ?g. }
- W4366990773 endingPage "A456" @default.
- W4366990773 startingPage "A427" @default.
- W4366990773 abstract "The Cahn–Hilliard equation was originally proposed to describe the phase separation phenomenon for a binary alloy in the quenching process and now has been widely applied in many other scientific fields. To investigate its solution behavior, one mainly depends on the numerical simulations because of the nonlinearity. However, it would require very small time steps to describe the phase separation procedure since it evolves very quickly in time, which implies that an efficient solver for the spatial problem at each time level is very important. In this paper, we investigate a coupled second order elliptic system of constant coefficients, which occurs in many different unconditionally energy stable time discretization schemes for the Cahn–Hilliard equation. For a min-max problem of convergence factor that is obtained via Fourier analysis in the case of two-subdomain domain decomposition, by using an asymptotic analysis we obtain the optimized transmission parameters in explicit form applied in the Robin and the two-sided Robin transmission conditions for both the overlapping and the nonoverlapping Schwarz domain decomposition algorithms, and we obtain as well the corresponding asymptotic convergence rates. Particularly, we also explore and analyze the many-subdomain cases directly and find that the algorithms are scalable until a certain number of subdomains is reached for small time steps, even if there is no coarse grid correction. We finally use numerical examples to illustrate our theoretical findings." @default.
- W4366990773 created "2023-04-27" @default.
- W4366990773 creator A5001767943 @default.
- W4366990773 creator A5021012643 @default.
- W4366990773 creator A5064126472 @default.
- W4366990773 creator A5088579096 @default.
- W4366990773 date "2023-04-25" @default.
- W4366990773 modified "2023-10-14" @default.
- W4366990773 title "Optimized Schwarz Methods for the Cahn–Hilliard Equation" @default.
- W4366990773 cites W1503942291 @default.
- W4366990773 cites W1521182415 @default.
- W4366990773 cites W1548589512 @default.
- W4366990773 cites W1969100313 @default.
- W4366990773 cites W1973728860 @default.
- W4366990773 cites W1984480729 @default.
- W4366990773 cites W2000808745 @default.
- W4366990773 cites W2004727054 @default.
- W4366990773 cites W2007510482 @default.
- W4366990773 cites W2020633626 @default.
- W4366990773 cites W2024381649 @default.
- W4366990773 cites W2029449803 @default.
- W4366990773 cites W2030350543 @default.
- W4366990773 cites W2031130696 @default.
- W4366990773 cites W2031817405 @default.
- W4366990773 cites W2033447735 @default.
- W4366990773 cites W2035238652 @default.
- W4366990773 cites W2046528357 @default.
- W4366990773 cites W2046582129 @default.
- W4366990773 cites W2050969603 @default.
- W4366990773 cites W2057709785 @default.
- W4366990773 cites W2058204682 @default.
- W4366990773 cites W2063606009 @default.
- W4366990773 cites W2083892724 @default.
- W4366990773 cites W2095237903 @default.
- W4366990773 cites W2128204029 @default.
- W4366990773 cites W2138189258 @default.
- W4366990773 cites W2167347425 @default.
- W4366990773 cites W2171622994 @default.
- W4366990773 cites W2318086149 @default.
- W4366990773 cites W2398729377 @default.
- W4366990773 cites W2521393946 @default.
- W4366990773 cites W2521434405 @default.
- W4366990773 cites W2593562401 @default.
- W4366990773 cites W2762615621 @default.
- W4366990773 cites W2767876175 @default.
- W4366990773 cites W2790325139 @default.
- W4366990773 cites W2883454831 @default.
- W4366990773 cites W2901300391 @default.
- W4366990773 cites W2903512824 @default.
- W4366990773 cites W2907247105 @default.
- W4366990773 cites W2963292939 @default.
- W4366990773 cites W3011896022 @default.
- W4366990773 cites W3087680391 @default.
- W4366990773 cites W3111536438 @default.
- W4366990773 cites W3121007210 @default.
- W4366990773 cites W3213170167 @default.
- W4366990773 cites W4235228724 @default.
- W4366990773 doi "https://doi.org/10.1137/21m1459915" @default.
- W4366990773 hasPublicationYear "2023" @default.
- W4366990773 type Work @default.
- W4366990773 citedByCount "0" @default.
- W4366990773 crossrefType "journal-article" @default.
- W4366990773 hasAuthorship W4366990773A5001767943 @default.
- W4366990773 hasAuthorship W4366990773A5021012643 @default.
- W4366990773 hasAuthorship W4366990773A5064126472 @default.
- W4366990773 hasAuthorship W4366990773A5088579096 @default.
- W4366990773 hasConcept C11413529 @default.
- W4366990773 hasConcept C121332964 @default.
- W4366990773 hasConcept C126255220 @default.
- W4366990773 hasConcept C134306372 @default.
- W4366990773 hasConcept C135628077 @default.
- W4366990773 hasConcept C162324750 @default.
- W4366990773 hasConcept C198880260 @default.
- W4366990773 hasConcept C24822716 @default.
- W4366990773 hasConcept C2777303404 @default.
- W4366990773 hasConcept C2778770139 @default.
- W4366990773 hasConcept C28826006 @default.
- W4366990773 hasConcept C33923547 @default.
- W4366990773 hasConcept C50522688 @default.
- W4366990773 hasConcept C73000952 @default.
- W4366990773 hasConcept C75172450 @default.
- W4366990773 hasConcept C93779851 @default.
- W4366990773 hasConcept C97355855 @default.
- W4366990773 hasConceptScore W4366990773C11413529 @default.
- W4366990773 hasConceptScore W4366990773C121332964 @default.
- W4366990773 hasConceptScore W4366990773C126255220 @default.
- W4366990773 hasConceptScore W4366990773C134306372 @default.
- W4366990773 hasConceptScore W4366990773C135628077 @default.
- W4366990773 hasConceptScore W4366990773C162324750 @default.
- W4366990773 hasConceptScore W4366990773C198880260 @default.
- W4366990773 hasConceptScore W4366990773C24822716 @default.
- W4366990773 hasConceptScore W4366990773C2777303404 @default.
- W4366990773 hasConceptScore W4366990773C2778770139 @default.
- W4366990773 hasConceptScore W4366990773C28826006 @default.
- W4366990773 hasConceptScore W4366990773C33923547 @default.
- W4366990773 hasConceptScore W4366990773C50522688 @default.
- W4366990773 hasConceptScore W4366990773C73000952 @default.
- W4366990773 hasConceptScore W4366990773C75172450 @default.