Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366990821> ?p ?o ?g. }
- W4366990821 endingPage "1773" @default.
- W4366990821 startingPage "1773" @default.
- W4366990821 abstract "In the field of safety detection of fruits and vegetables, how to conduct non-destructive detection of pesticide residues is still a pressing problem to be solved. In response to the high cost and destructive nature of existing chemical detection methods, this study explored the potential of identifying different pesticide residues on Hami melon by short-wave infrared (SWIR) (spectral range of 1000-2500 nm) hyperspectral imaging (HSI) technology combined with machine learning. Firstly, the classification effects of classical classification models, namely extreme learning machine (ELM), support vector machine (SVM), and partial least squares discriminant analysis (PLS-DA) on pesticide residues on Hami melon were compared, ELM was selected as the benchmark model for subsequent optimization. Then, the effects of different preprocessing treatments on ELM were compared and analyzed to determine the most suitable spectral preprocessing treatment. The ELM model optimized by Honey Badger Algorithm (HBA) with adaptive t-distribution mutation strategy (tHBA-ELM) was proposed to improve the detection accuracy for the detection of pesticide residues on Hami melon. The primitive HBA algorithm was optimized by using adaptive t-distribution, which improved the structure of the population and increased the convergence speed. Compared the classification results of tHBA-ELM with HBA-ELM and ELM model optimized by genetic algorithm (GA-ELM), the tHBA-ELM model can accurately identify whether there were pesticide residues and different types of pesticides. The accuracy, precision, sensitivity, and F1-score of the test set was 93.50%, 93.73%, 93.50%, and 0.9355, respectively. Metaheuristic optimization algorithms can improve the classification performance of classical machine learning classification models. Among all the models, the performance of tHBA-ELM was satisfactory. The results indicated that SWIR-HSI coupled with tHBA-ELM can be used for the non-destructive detection of pesticide residues on Hami melon, which provided the theoretical basis and technical reference for the detection of pesticide residues in other fruits and vegetables." @default.
- W4366990821 created "2023-04-27" @default.
- W4366990821 creator A5005569838 @default.
- W4366990821 creator A5052428017 @default.
- W4366990821 creator A5055593898 @default.
- W4366990821 creator A5063872722 @default.
- W4366990821 creator A5067775601 @default.
- W4366990821 creator A5076052040 @default.
- W4366990821 date "2023-04-25" @default.
- W4366990821 modified "2023-09-25" @default.
- W4366990821 title "Non-Destructive Detection of Different Pesticide Residues on the Surface of Hami Melon Classification Based on tHBA-ELM Algorithm and SWIR Hyperspectral Imaging" @default.
- W4366990821 cites W1194544749 @default.
- W4366990821 cites W1816511471 @default.
- W4366990821 cites W1963863797 @default.
- W4366990821 cites W1969829124 @default.
- W4366990821 cites W1974523379 @default.
- W4366990821 cites W2012358846 @default.
- W4366990821 cites W2021994409 @default.
- W4366990821 cites W2037275106 @default.
- W4366990821 cites W2081552889 @default.
- W4366990821 cites W2084117123 @default.
- W4366990821 cites W2319160967 @default.
- W4366990821 cites W2320733939 @default.
- W4366990821 cites W2322946564 @default.
- W4366990821 cites W2413254447 @default.
- W4366990821 cites W2428108125 @default.
- W4366990821 cites W2614180783 @default.
- W4366990821 cites W2744512582 @default.
- W4366990821 cites W2776202363 @default.
- W4366990821 cites W2790141228 @default.
- W4366990821 cites W2794244565 @default.
- W4366990821 cites W2888328781 @default.
- W4366990821 cites W2901317701 @default.
- W4366990821 cites W2963363786 @default.
- W4366990821 cites W2972951566 @default.
- W4366990821 cites W2983746853 @default.
- W4366990821 cites W2995218095 @default.
- W4366990821 cites W3003211699 @default.
- W4366990821 cites W3022306531 @default.
- W4366990821 cites W3108899087 @default.
- W4366990821 cites W3126324070 @default.
- W4366990821 cites W3134781677 @default.
- W4366990821 cites W3177207586 @default.
- W4366990821 cites W3184873480 @default.
- W4366990821 cites W3192524834 @default.
- W4366990821 cites W3196661916 @default.
- W4366990821 cites W3196670404 @default.
- W4366990821 cites W3196811283 @default.
- W4366990821 cites W3198049484 @default.
- W4366990821 cites W3210890910 @default.
- W4366990821 cites W4200513149 @default.
- W4366990821 cites W4205146394 @default.
- W4366990821 cites W4206231459 @default.
- W4366990821 cites W4206594064 @default.
- W4366990821 cites W4206941405 @default.
- W4366990821 cites W4207064022 @default.
- W4366990821 cites W4211123967 @default.
- W4366990821 cites W4220843891 @default.
- W4366990821 cites W4225966261 @default.
- W4366990821 cites W4255994162 @default.
- W4366990821 cites W4294690765 @default.
- W4366990821 cites W854984980 @default.
- W4366990821 doi "https://doi.org/10.3390/foods12091773" @default.
- W4366990821 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37174311" @default.
- W4366990821 hasPublicationYear "2023" @default.
- W4366990821 type Work @default.
- W4366990821 citedByCount "0" @default.
- W4366990821 crossrefType "journal-article" @default.
- W4366990821 hasAuthorship W4366990821A5005569838 @default.
- W4366990821 hasAuthorship W4366990821A5052428017 @default.
- W4366990821 hasAuthorship W4366990821A5055593898 @default.
- W4366990821 hasAuthorship W4366990821A5063872722 @default.
- W4366990821 hasAuthorship W4366990821A5067775601 @default.
- W4366990821 hasAuthorship W4366990821A5076052040 @default.
- W4366990821 hasBestOaLocation W43669908211 @default.
- W4366990821 hasConcept C106848363 @default.
- W4366990821 hasConcept C11413529 @default.
- W4366990821 hasConcept C119857082 @default.
- W4366990821 hasConcept C12267149 @default.
- W4366990821 hasConcept C153180895 @default.
- W4366990821 hasConcept C154945302 @default.
- W4366990821 hasConcept C159078339 @default.
- W4366990821 hasConcept C161176658 @default.
- W4366990821 hasConcept C2780150128 @default.
- W4366990821 hasConcept C34736171 @default.
- W4366990821 hasConcept C41008148 @default.
- W4366990821 hasConcept C50644808 @default.
- W4366990821 hasConcept C6557445 @default.
- W4366990821 hasConcept C86803240 @default.
- W4366990821 hasConcept C8880873 @default.
- W4366990821 hasConceptScore W4366990821C106848363 @default.
- W4366990821 hasConceptScore W4366990821C11413529 @default.
- W4366990821 hasConceptScore W4366990821C119857082 @default.
- W4366990821 hasConceptScore W4366990821C12267149 @default.
- W4366990821 hasConceptScore W4366990821C153180895 @default.
- W4366990821 hasConceptScore W4366990821C154945302 @default.
- W4366990821 hasConceptScore W4366990821C159078339 @default.
- W4366990821 hasConceptScore W4366990821C161176658 @default.