Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366990868> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4366990868 endingPage "5326" @default.
- W4366990868 startingPage "5326" @default.
- W4366990868 abstract "Object detection is a classic image processing problem. For instance, in autonomous driving applications, targets such as cars and pedestrians are detected in the road scene video. Many image-based object detection methods utilizing hand-crafted features have been proposed. Recently, more research has adopted a deep learning approach. Object detectors rely on useful features, such as the object’s boundary, which are extracted via analyzing the image pixels. However, the images captured, for instance, in an outdoor environment, may be degraded due to bad weather such as haze and fog. One possible remedy is to recover the image radiance through the use of a pre-processing method such as image dehazing. We propose a dehazing model for image enhancement. The framework was based on the conditional generative adversarial network (cGAN). Our proposed model was improved with two modifications. Various image dehazing datasets were employed for comparative analysis. Our proposed model outperformed other hand-crafted and deep learning-based image dehazing methods by 2dB or more in PSNR. Moreover, we utilized the dehazed images for target detection using the object detector YOLO. In the experimentations, images were degraded by two weather conditions—rain and fog. We demonstrated that the objects detected in images enhanced by our proposed dehazing model were significantly improved over those detected in the degraded images." @default.
- W4366990868 created "2023-04-27" @default.
- W4366990868 creator A5003124506 @default.
- W4366990868 creator A5008306679 @default.
- W4366990868 creator A5050291012 @default.
- W4366990868 date "2023-04-24" @default.
- W4366990868 modified "2023-09-27" @default.
- W4366990868 title "Detection of Targets in Road Scene Images Enhanced Using Conditional GAN-Based Dehazing Model" @default.
- W4366990868 cites W125693051 @default.
- W4366990868 cites W2095543923 @default.
- W4366990868 cites W2099015219 @default.
- W4366990868 cites W2102605133 @default.
- W4366990868 cites W2147318913 @default.
- W4366990868 cites W2194775991 @default.
- W4366990868 cites W2399764022 @default.
- W4366990868 cites W2735220968 @default.
- W4366990868 cites W2748021867 @default.
- W4366990868 cites W2779176852 @default.
- W4366990868 cites W2792830341 @default.
- W4366990868 cites W2796040739 @default.
- W4366990868 cites W2798876216 @default.
- W4366990868 cites W2921391597 @default.
- W4366990868 cites W2944501892 @default.
- W4366990868 cites W2963037989 @default.
- W4366990868 cites W2963150697 @default.
- W4366990868 cites W2963306157 @default.
- W4366990868 cites W2963928582 @default.
- W4366990868 cites W2964115968 @default.
- W4366990868 cites W2989686920 @default.
- W4366990868 cites W2999979194 @default.
- W4366990868 cites W3021850033 @default.
- W4366990868 cites W3028365735 @default.
- W4366990868 cites W3034278302 @default.
- W4366990868 cites W3085225783 @default.
- W4366990868 cites W3097458442 @default.
- W4366990868 cites W3106250896 @default.
- W4366990868 cites W3127238920 @default.
- W4366990868 cites W3132980458 @default.
- W4366990868 cites W3157005178 @default.
- W4366990868 cites W3162681312 @default.
- W4366990868 cites W3173269149 @default.
- W4366990868 cites W3206713300 @default.
- W4366990868 cites W4312617404 @default.
- W4366990868 doi "https://doi.org/10.3390/app13095326" @default.
- W4366990868 hasPublicationYear "2023" @default.
- W4366990868 type Work @default.
- W4366990868 citedByCount "0" @default.
- W4366990868 crossrefType "journal-article" @default.
- W4366990868 hasAuthorship W4366990868A5003124506 @default.
- W4366990868 hasAuthorship W4366990868A5008306679 @default.
- W4366990868 hasAuthorship W4366990868A5050291012 @default.
- W4366990868 hasBestOaLocation W43669908681 @default.
- W4366990868 hasConcept C115961682 @default.
- W4366990868 hasConcept C153180895 @default.
- W4366990868 hasConcept C154945302 @default.
- W4366990868 hasConcept C160633673 @default.
- W4366990868 hasConcept C205649164 @default.
- W4366990868 hasConcept C23690007 @default.
- W4366990868 hasConcept C2776151529 @default.
- W4366990868 hasConcept C2781238097 @default.
- W4366990868 hasConcept C31972630 @default.
- W4366990868 hasConcept C41008148 @default.
- W4366990868 hasConcept C62649853 @default.
- W4366990868 hasConceptScore W4366990868C115961682 @default.
- W4366990868 hasConceptScore W4366990868C153180895 @default.
- W4366990868 hasConceptScore W4366990868C154945302 @default.
- W4366990868 hasConceptScore W4366990868C160633673 @default.
- W4366990868 hasConceptScore W4366990868C205649164 @default.
- W4366990868 hasConceptScore W4366990868C23690007 @default.
- W4366990868 hasConceptScore W4366990868C2776151529 @default.
- W4366990868 hasConceptScore W4366990868C2781238097 @default.
- W4366990868 hasConceptScore W4366990868C31972630 @default.
- W4366990868 hasConceptScore W4366990868C41008148 @default.
- W4366990868 hasConceptScore W4366990868C62649853 @default.
- W4366990868 hasIssue "9" @default.
- W4366990868 hasLocation W43669908681 @default.
- W4366990868 hasOpenAccess W4366990868 @default.
- W4366990868 hasPrimaryLocation W43669908681 @default.
- W4366990868 hasRelatedWork W121273120 @default.
- W4366990868 hasRelatedWork W1988485990 @default.
- W4366990868 hasRelatedWork W2007544051 @default.
- W4366990868 hasRelatedWork W2095705906 @default.
- W4366990868 hasRelatedWork W2334336442 @default.
- W4366990868 hasRelatedWork W2337415362 @default.
- W4366990868 hasRelatedWork W2732308154 @default.
- W4366990868 hasRelatedWork W2975200075 @default.
- W4366990868 hasRelatedWork W3177406559 @default.
- W4366990868 hasRelatedWork W4312857205 @default.
- W4366990868 hasVolume "13" @default.
- W4366990868 isParatext "false" @default.
- W4366990868 isRetracted "false" @default.
- W4366990868 workType "article" @default.