Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366991037> ?p ?o ?g. }
- W4366991037 endingPage "219" @default.
- W4366991037 startingPage "219" @default.
- W4366991037 abstract "This paper aimed to increase accuracy of an Alzheimer’s disease diagnosing function that was obtained in a previous study devoted to application of decision roots to the diagnosis of Alzheimer’s disease. The obtained decision root is a discrete switching function of several variables applicated to aggregation of a few indicators to one integrated assessment presents as a superposition of few functions of two variables. Magnetic susceptibility values of the basal veins and veins of the thalamus were used as indicators. Two categories of patients were used as function values. To increase accuracy, the idea of using artificial neural networks was suggested, but a feature of medical data is its limitation. Therefore, neural networks based on limited training datasets may be inefficient. The solution to this problem is proposed to preprocess initial datasets to determine the parameters of the neural networks based on decisions’ roots, because it is known that any can be represented in the incompletely connected neural network form with a cascade structure. There are no publicly available specialized software products allowing the user to set the complex structure of a neural network, which is why the number of synaptic coefficients of an incompletely connected neural network has been determined. This made it possible to predefine fully connected neural networks, comparable in terms of the number of unknown parameters. Acceptable accuracy was obtained in cases of one-layer and two-layer fully connected neural networks trained on limited training sets on an example of diagnosing Alzheimer’s disease. Thus, the scientific hypothesis on preprocessing initial datasets and neural network architecture selection using special methods and algorithms was confirmed." @default.
- W4366991037 created "2023-04-27" @default.
- W4366991037 creator A5007766643 @default.
- W4366991037 creator A5014521536 @default.
- W4366991037 creator A5015832873 @default.
- W4366991037 creator A5072056414 @default.
- W4366991037 date "2023-04-25" @default.
- W4366991037 modified "2023-09-27" @default.
- W4366991037 title "Data Preprocessing and Neural Network Architecture Selection Algorithms in Cases of Limited Training Sets—On an Example of Diagnosing Alzheimer’s Disease" @default.
- W4366991037 cites W1948991958 @default.
- W4366991037 cites W1973448749 @default.
- W4366991037 cites W2002475630 @default.
- W4366991037 cites W2045434168 @default.
- W4366991037 cites W2065564800 @default.
- W4366991037 cites W2086459955 @default.
- W4366991037 cites W2096193724 @default.
- W4366991037 cites W2102121645 @default.
- W4366991037 cites W2103592462 @default.
- W4366991037 cites W2111570868 @default.
- W4366991037 cites W2131444712 @default.
- W4366991037 cites W2140169721 @default.
- W4366991037 cites W2146545384 @default.
- W4366991037 cites W2148902913 @default.
- W4366991037 cites W2158592797 @default.
- W4366991037 cites W2255534870 @default.
- W4366991037 cites W2418355785 @default.
- W4366991037 cites W2554787403 @default.
- W4366991037 cites W2593062833 @default.
- W4366991037 cites W2604754546 @default.
- W4366991037 cites W2609876035 @default.
- W4366991037 cites W2789457320 @default.
- W4366991037 cites W2803912046 @default.
- W4366991037 cites W2883545264 @default.
- W4366991037 cites W2887458865 @default.
- W4366991037 cites W2898135489 @default.
- W4366991037 cites W2913997818 @default.
- W4366991037 cites W2969248822 @default.
- W4366991037 cites W2986224545 @default.
- W4366991037 cites W3042408356 @default.
- W4366991037 cites W3042933837 @default.
- W4366991037 cites W3102638863 @default.
- W4366991037 cites W3114239252 @default.
- W4366991037 cites W3123973857 @default.
- W4366991037 cites W3135158852 @default.
- W4366991037 cites W3135415840 @default.
- W4366991037 cites W3204726979 @default.
- W4366991037 cites W3209675209 @default.
- W4366991037 cites W3214256696 @default.
- W4366991037 cites W4200171901 @default.
- W4366991037 cites W4205123503 @default.
- W4366991037 cites W4210503904 @default.
- W4366991037 cites W4255949318 @default.
- W4366991037 cites W4311926165 @default.
- W4366991037 cites W4311926190 @default.
- W4366991037 doi "https://doi.org/10.3390/a16050219" @default.
- W4366991037 hasPublicationYear "2023" @default.
- W4366991037 type Work @default.
- W4366991037 citedByCount "0" @default.
- W4366991037 crossrefType "journal-article" @default.
- W4366991037 hasAuthorship W4366991037A5007766643 @default.
- W4366991037 hasAuthorship W4366991037A5014521536 @default.
- W4366991037 hasAuthorship W4366991037A5015832873 @default.
- W4366991037 hasAuthorship W4366991037A5072056414 @default.
- W4366991037 hasBestOaLocation W43669910371 @default.
- W4366991037 hasConcept C11413529 @default.
- W4366991037 hasConcept C119857082 @default.
- W4366991037 hasConcept C124101348 @default.
- W4366991037 hasConcept C14036430 @default.
- W4366991037 hasConcept C153180895 @default.
- W4366991037 hasConcept C154945302 @default.
- W4366991037 hasConcept C177264268 @default.
- W4366991037 hasConcept C199360897 @default.
- W4366991037 hasConcept C34736171 @default.
- W4366991037 hasConcept C38365724 @default.
- W4366991037 hasConcept C41008148 @default.
- W4366991037 hasConcept C50644808 @default.
- W4366991037 hasConcept C78458016 @default.
- W4366991037 hasConcept C86803240 @default.
- W4366991037 hasConceptScore W4366991037C11413529 @default.
- W4366991037 hasConceptScore W4366991037C119857082 @default.
- W4366991037 hasConceptScore W4366991037C124101348 @default.
- W4366991037 hasConceptScore W4366991037C14036430 @default.
- W4366991037 hasConceptScore W4366991037C153180895 @default.
- W4366991037 hasConceptScore W4366991037C154945302 @default.
- W4366991037 hasConceptScore W4366991037C177264268 @default.
- W4366991037 hasConceptScore W4366991037C199360897 @default.
- W4366991037 hasConceptScore W4366991037C34736171 @default.
- W4366991037 hasConceptScore W4366991037C38365724 @default.
- W4366991037 hasConceptScore W4366991037C41008148 @default.
- W4366991037 hasConceptScore W4366991037C50644808 @default.
- W4366991037 hasConceptScore W4366991037C78458016 @default.
- W4366991037 hasConceptScore W4366991037C86803240 @default.
- W4366991037 hasIssue "5" @default.
- W4366991037 hasLocation W43669910371 @default.
- W4366991037 hasOpenAccess W4366991037 @default.
- W4366991037 hasPrimaryLocation W43669910371 @default.
- W4366991037 hasRelatedWork W1525510058 @default.
- W4366991037 hasRelatedWork W2043754618 @default.