Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366991255> ?p ?o ?g. }
- W4366991255 abstract "While research into drug-target interaction (DTI) prediction is fairly mature, generalizability and interpretability are not always addressed in the existing works in this field. In this paper, we propose a deep learning (DL)-based framework, called BindingSite-AugmentedDTA, which improves drug-target affinity (DTA) predictions by reducing the search space of potential-binding sites of the protein, thus making the binding affinity prediction more efficient and accurate. Our BindingSite-AugmentedDTA is highly generalizable as it can be integrated with any DL-based regression model, while it significantly improves their prediction performance. Also, unlike many existing models, our model is highly interpretable due to its architecture and self-attention mechanism, which can provide a deeper understanding of its underlying prediction mechanism by mapping attention weights back to protein-binding sites. The computational results confirm that our framework can enhance the prediction performance of seven state-of-the-art DTA prediction algorithms in terms of four widely used evaluation metrics, including concordance index, mean squared error, modified squared correlation coefficient ($r^2_m$) and the area under the precision curve. We also contribute to three benchmark drug-traget interaction datasets by including additional information on 3D structure of all proteins contained in those datasets, which include the two most commonly used datasets, namely Kiba and Davis, as well as the data from IDG-DREAM drug-kinase binding prediction challenge. Furthermore, we experimentally validate the practical potential of our proposed framework through in-lab experiments. The relatively high agreement between computationally predicted and experimentally observed binding interactions supports the potential of our framework as the next-generation pipeline for prediction models in drug repurposing." @default.
- W4366991255 created "2023-04-27" @default.
- W4366991255 creator A5013241705 @default.
- W4366991255 creator A5024754640 @default.
- W4366991255 creator A5026168431 @default.
- W4366991255 creator A5031686351 @default.
- W4366991255 creator A5043368211 @default.
- W4366991255 creator A5054474613 @default.
- W4366991255 creator A5062903281 @default.
- W4366991255 creator A5072134023 @default.
- W4366991255 creator A5075351963 @default.
- W4366991255 creator A5077764254 @default.
- W4366991255 date "2023-04-24" @default.
- W4366991255 modified "2023-10-05" @default.
- W4366991255 title "BindingSite-AugmentedDTA: enabling a next-generation pipeline for interpretable prediction models in drug repurposing" @default.
- W4366991255 cites W1972987731 @default.
- W4366991255 cites W2003281617 @default.
- W4366991255 cites W2011580004 @default.
- W4366991255 cites W2012438480 @default.
- W4366991255 cites W2023782921 @default.
- W4366991255 cites W2035585923 @default.
- W4366991255 cites W2044002635 @default.
- W4366991255 cites W2086286404 @default.
- W4366991255 cites W2109991441 @default.
- W4366991255 cites W2138072853 @default.
- W4366991255 cites W2138778824 @default.
- W4366991255 cites W2145962544 @default.
- W4366991255 cites W2399976582 @default.
- W4366991255 cites W2407258532 @default.
- W4366991255 cites W2605952223 @default.
- W4366991255 cites W2744129621 @default.
- W4366991255 cites W2754595644 @default.
- W4366991255 cites W2785947426 @default.
- W4366991255 cites W2793951981 @default.
- W4366991255 cites W2806547269 @default.
- W4366991255 cites W2809216727 @default.
- W4366991255 cites W2899788782 @default.
- W4366991255 cites W2918335507 @default.
- W4366991255 cites W2989848927 @default.
- W4366991255 cites W3004604833 @default.
- W4366991255 cites W3005669732 @default.
- W4366991255 cites W3007077815 @default.
- W4366991255 cites W3012511738 @default.
- W4366991255 cites W3032123378 @default.
- W4366991255 cites W3088849005 @default.
- W4366991255 cites W3096561213 @default.
- W4366991255 cites W3098269892 @default.
- W4366991255 cites W3164680581 @default.
- W4366991255 cites W3197082762 @default.
- W4366991255 cites W4244021009 @default.
- W4366991255 cites W4285041843 @default.
- W4366991255 cites W4292157312 @default.
- W4366991255 doi "https://doi.org/10.1093/bib/bbad136" @default.
- W4366991255 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37096593" @default.
- W4366991255 hasPublicationYear "2023" @default.
- W4366991255 type Work @default.
- W4366991255 citedByCount "3" @default.
- W4366991255 countsByYear W43669912552023 @default.
- W4366991255 crossrefType "journal-article" @default.
- W4366991255 hasAuthorship W4366991255A5013241705 @default.
- W4366991255 hasAuthorship W4366991255A5024754640 @default.
- W4366991255 hasAuthorship W4366991255A5026168431 @default.
- W4366991255 hasAuthorship W4366991255A5031686351 @default.
- W4366991255 hasAuthorship W4366991255A5043368211 @default.
- W4366991255 hasAuthorship W4366991255A5054474613 @default.
- W4366991255 hasAuthorship W4366991255A5062903281 @default.
- W4366991255 hasAuthorship W4366991255A5072134023 @default.
- W4366991255 hasAuthorship W4366991255A5075351963 @default.
- W4366991255 hasAuthorship W4366991255A5077764254 @default.
- W4366991255 hasBestOaLocation W43669912551 @default.
- W4366991255 hasConcept C103637391 @default.
- W4366991255 hasConcept C105795698 @default.
- W4366991255 hasConcept C118552586 @default.
- W4366991255 hasConcept C119857082 @default.
- W4366991255 hasConcept C12267149 @default.
- W4366991255 hasConcept C124101348 @default.
- W4366991255 hasConcept C13280743 @default.
- W4366991255 hasConcept C139945424 @default.
- W4366991255 hasConcept C154945302 @default.
- W4366991255 hasConcept C15744967 @default.
- W4366991255 hasConcept C164085508 @default.
- W4366991255 hasConcept C185798385 @default.
- W4366991255 hasConcept C199360897 @default.
- W4366991255 hasConcept C205649164 @default.
- W4366991255 hasConcept C22019652 @default.
- W4366991255 hasConcept C27158222 @default.
- W4366991255 hasConcept C2780035454 @default.
- W4366991255 hasConcept C2781067378 @default.
- W4366991255 hasConcept C33923547 @default.
- W4366991255 hasConcept C41008148 @default.
- W4366991255 hasConcept C43521106 @default.
- W4366991255 hasConcept C50644808 @default.
- W4366991255 hasConceptScore W4366991255C103637391 @default.
- W4366991255 hasConceptScore W4366991255C105795698 @default.
- W4366991255 hasConceptScore W4366991255C118552586 @default.
- W4366991255 hasConceptScore W4366991255C119857082 @default.
- W4366991255 hasConceptScore W4366991255C12267149 @default.
- W4366991255 hasConceptScore W4366991255C124101348 @default.
- W4366991255 hasConceptScore W4366991255C13280743 @default.
- W4366991255 hasConceptScore W4366991255C139945424 @default.