Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366991539> ?p ?o ?g. }
- W4366991539 abstract "Abstract Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous tumor that is highly aggressive and ranks fifth among the most common cancers worldwide. Although, the researches that attempted to construct a diagnostic model were deficient in HNSCC. Currently, the gold standard for diagnosing head and neck tumors is pathology, but this requires a traumatic biopsy. There is still a lack of a noninvasive test for such a high—incidence tumor. In order to screen genetic markers and construct diagnostic model, the methods of random forest (RF) and artificial neural network (ANN) were utilized. The data of HNSCC gene expression was accessed from Gene Expression Omnibus (GEO) database; we selected three datasets totally, and we combined 2 datasets (GSE6631 and GSE55547) for screening differentially expressed genes (DEGs) and chose another dataset (GSE13399) for validation. Firstly, the 6 DEGs (CRISP3, SPINK5, KRT4, MMP1, MAL, SPP1) were screened by RF. Subsequently, ANN was applied to calculate the weights of 6 genes. Besides, we created a diagnostic model and nominated it as neuralHNSCC, and the performance of neuralHNSCC by area under curve (AUC) was verified using another dataset. Our model achieved an AUC of 0.998 in the training cohort, and 0.734 in the validation cohort. Furthermore, we used the Cell-type Identification using Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm to investigate the difference in immune cell infiltration between HNSCC and normal tissues initially. The selected 6 DEGs and the constructed novel diagnostic model of HNSCC would make contributions to the diagnosis." @default.
- W4366991539 created "2023-04-27" @default.
- W4366991539 creator A5006397303 @default.
- W4366991539 creator A5035094435 @default.
- W4366991539 creator A5056976700 @default.
- W4366991539 creator A5057326412 @default.
- W4366991539 creator A5060607118 @default.
- W4366991539 creator A5083293268 @default.
- W4366991539 date "2023-04-25" @default.
- W4366991539 modified "2023-10-14" @default.
- W4366991539 title "Construction and analysis of a conjunctive diagnostic model of HNSCC with random forest and artificial neural network" @default.
- W4366991539 cites W1551518644 @default.
- W4366991539 cites W1810028515 @default.
- W4366991539 cites W1823780969 @default.
- W4366991539 cites W1966766450 @default.
- W4366991539 cites W1987776395 @default.
- W4366991539 cites W1990956554 @default.
- W4366991539 cites W2001311476 @default.
- W4366991539 cites W2003500892 @default.
- W4366991539 cites W2006617902 @default.
- W4366991539 cites W2007987084 @default.
- W4366991539 cites W2018235438 @default.
- W4366991539 cites W2018938486 @default.
- W4366991539 cites W2035618305 @default.
- W4366991539 cites W2047564123 @default.
- W4366991539 cites W2061942566 @default.
- W4366991539 cites W2064597980 @default.
- W4366991539 cites W2071847134 @default.
- W4366991539 cites W2096966618 @default.
- W4366991539 cites W2102944549 @default.
- W4366991539 cites W2114411881 @default.
- W4366991539 cites W2127636402 @default.
- W4366991539 cites W2130631648 @default.
- W4366991539 cites W2131362474 @default.
- W4366991539 cites W2142441225 @default.
- W4366991539 cites W2145054292 @default.
- W4366991539 cites W2146512944 @default.
- W4366991539 cites W2146936606 @default.
- W4366991539 cites W2153601733 @default.
- W4366991539 cites W2154401382 @default.
- W4366991539 cites W2157156088 @default.
- W4366991539 cites W2159482845 @default.
- W4366991539 cites W2163814058 @default.
- W4366991539 cites W2273438839 @default.
- W4366991539 cites W2288651793 @default.
- W4366991539 cites W2514448720 @default.
- W4366991539 cites W2579941249 @default.
- W4366991539 cites W2593086047 @default.
- W4366991539 cites W2609412642 @default.
- W4366991539 cites W2614787430 @default.
- W4366991539 cites W2801309958 @default.
- W4366991539 cites W2884403205 @default.
- W4366991539 cites W2885310257 @default.
- W4366991539 cites W2890675933 @default.
- W4366991539 cites W2906809706 @default.
- W4366991539 cites W2913062750 @default.
- W4366991539 cites W2921050819 @default.
- W4366991539 cites W2950030754 @default.
- W4366991539 cites W2952005535 @default.
- W4366991539 cites W2963145050 @default.
- W4366991539 cites W2968920573 @default.
- W4366991539 cites W2993997444 @default.
- W4366991539 cites W2999549828 @default.
- W4366991539 cites W3002787057 @default.
- W4366991539 cites W3006214404 @default.
- W4366991539 cites W3009500990 @default.
- W4366991539 cites W3023851621 @default.
- W4366991539 cites W3094466019 @default.
- W4366991539 cites W3100128679 @default.
- W4366991539 cites W3101842049 @default.
- W4366991539 cites W3107533236 @default.
- W4366991539 cites W3119005666 @default.
- W4366991539 cites W3128838825 @default.
- W4366991539 cites W3149906897 @default.
- W4366991539 cites W3159774924 @default.
- W4366991539 cites W4200517968 @default.
- W4366991539 cites W4200625671 @default.
- W4366991539 cites W4210539487 @default.
- W4366991539 cites W4220726393 @default.
- W4366991539 cites W4294216483 @default.
- W4366991539 doi "https://doi.org/10.1038/s41598-023-32620-6" @default.
- W4366991539 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37185487" @default.
- W4366991539 hasPublicationYear "2023" @default.
- W4366991539 type Work @default.
- W4366991539 citedByCount "0" @default.
- W4366991539 crossrefType "journal-article" @default.
- W4366991539 hasAuthorship W4366991539A5006397303 @default.
- W4366991539 hasAuthorship W4366991539A5035094435 @default.
- W4366991539 hasAuthorship W4366991539A5056976700 @default.
- W4366991539 hasAuthorship W4366991539A5057326412 @default.
- W4366991539 hasAuthorship W4366991539A5060607118 @default.
- W4366991539 hasAuthorship W4366991539A5083293268 @default.
- W4366991539 hasBestOaLocation W43669915391 @default.
- W4366991539 hasConcept C119857082 @default.
- W4366991539 hasConcept C121608353 @default.
- W4366991539 hasConcept C126322002 @default.
- W4366991539 hasConcept C142724271 @default.
- W4366991539 hasConcept C143998085 @default.
- W4366991539 hasConcept C154945302 @default.
- W4366991539 hasConcept C169258074 @default.