Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366992530> ?p ?o ?g. }
- W4366992530 endingPage "106648" @default.
- W4366992530 startingPage "106648" @default.
- W4366992530 abstract "This study aims to provide an effective and accurate machine learning approach to predict the compressive strength (CS) and flexural strength (FS) of 3D printed fiber reinforced concrete (3DP-FRC). Six types of ML models were utilized in this study: random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), categorical gradient boosting (Catboost), and natural gradient boosting (NGBoost). The CS and FS data is collected from recent published papers and split into training set and testing set. The hyperparameter optimization techniques are applied to optimize the ML model parameters using a grid search strategy paired with the 5-fold cross-validation. In the testing set, XGBoost, LightGBM, Catboost, and NGBoost achieve high accuracy (R2 = 0.98, 0.98, 0.98, and 0.96, respectively) on CS prediction, which is better than that of RF and SVM (R2 = 0.90 and 0.92, respectively). High accuracy on FS prediction is also obtained in XGBoost, LightGBM, CatBoost, and NGBoost (R2 = 0.94, 0.93, 0.92, and 0.90, respectively). Furthermore, the relative importance of input variables' contribution to the mechanical performance of 3DP-FRC is disclosed via Shapley additive explanations (SHAP) analysis. The SHAP analysis identifies that water/binder ratio and ordinary Portland cement content are the most influential parameters for CS, while the loading direction and fiber volume fraction are the most significant parameters for FS. The ML models incorporated with SHAP analysis disclose the relationship between the input variables and mechanical performance of 3DP-FRC and could provide valuable information for the performance-based design of the mix proportion of 3DP-FRC." @default.
- W4366992530 created "2023-04-27" @default.
- W4366992530 creator A5002681649 @default.
- W4366992530 creator A5017932055 @default.
- W4366992530 creator A5066796468 @default.
- W4366992530 creator A5077168758 @default.
- W4366992530 creator A5087982944 @default.
- W4366992530 date "2023-08-01" @default.
- W4366992530 modified "2023-09-27" @default.
- W4366992530 title "Interpretable machine learning for predicting the strength of 3D printed fiber-reinforced concrete (3DP-FRC)" @default.
- W4366992530 cites W1978053173 @default.
- W4366992530 cites W1979685007 @default.
- W4366992530 cites W1992329416 @default.
- W4366992530 cites W2038808304 @default.
- W4366992530 cites W2138882494 @default.
- W4366992530 cites W2151203917 @default.
- W4366992530 cites W2167849100 @default.
- W4366992530 cites W2509907599 @default.
- W4366992530 cites W2741421471 @default.
- W4366992530 cites W2741922227 @default.
- W4366992530 cites W2748859796 @default.
- W4366992530 cites W2795411881 @default.
- W4366992530 cites W2807049491 @default.
- W4366992530 cites W2884582327 @default.
- W4366992530 cites W2888920615 @default.
- W4366992530 cites W2889292355 @default.
- W4366992530 cites W2900761354 @default.
- W4366992530 cites W2903144392 @default.
- W4366992530 cites W2912055253 @default.
- W4366992530 cites W2912403940 @default.
- W4366992530 cites W2961073028 @default.
- W4366992530 cites W2965144800 @default.
- W4366992530 cites W2976353133 @default.
- W4366992530 cites W2982239641 @default.
- W4366992530 cites W2995012791 @default.
- W4366992530 cites W2999605557 @default.
- W4366992530 cites W3003220135 @default.
- W4366992530 cites W3010156620 @default.
- W4366992530 cites W3011540643 @default.
- W4366992530 cites W3014468256 @default.
- W4366992530 cites W3025110191 @default.
- W4366992530 cites W3035353528 @default.
- W4366992530 cites W3039783692 @default.
- W4366992530 cites W3041244919 @default.
- W4366992530 cites W3041474369 @default.
- W4366992530 cites W3041981321 @default.
- W4366992530 cites W3045575733 @default.
- W4366992530 cites W3046991059 @default.
- W4366992530 cites W3048743805 @default.
- W4366992530 cites W3081125651 @default.
- W4366992530 cites W3096140803 @default.
- W4366992530 cites W3096175229 @default.
- W4366992530 cites W3116117970 @default.
- W4366992530 cites W3122295035 @default.
- W4366992530 cites W3124097627 @default.
- W4366992530 cites W3129418432 @default.
- W4366992530 cites W3131948835 @default.
- W4366992530 cites W3133372163 @default.
- W4366992530 cites W3145107647 @default.
- W4366992530 cites W3159897038 @default.
- W4366992530 cites W3160253034 @default.
- W4366992530 cites W3169954524 @default.
- W4366992530 cites W3183637089 @default.
- W4366992530 cites W3185551827 @default.
- W4366992530 cites W3189099487 @default.
- W4366992530 cites W3190464476 @default.
- W4366992530 cites W3195137260 @default.
- W4366992530 cites W3198148990 @default.
- W4366992530 cites W3205459677 @default.
- W4366992530 cites W3207809228 @default.
- W4366992530 cites W3207942183 @default.
- W4366992530 cites W3214024050 @default.
- W4366992530 cites W3216299319 @default.
- W4366992530 cites W4200160957 @default.
- W4366992530 cites W4200540962 @default.
- W4366992530 cites W4207022764 @default.
- W4366992530 cites W4207073938 @default.
- W4366992530 cites W4210417658 @default.
- W4366992530 cites W4210543791 @default.
- W4366992530 cites W4220893397 @default.
- W4366992530 cites W4224236323 @default.
- W4366992530 cites W4224287576 @default.
- W4366992530 cites W4250819118 @default.
- W4366992530 cites W4281754927 @default.
- W4366992530 cites W4282915736 @default.
- W4366992530 doi "https://doi.org/10.1016/j.jobe.2023.106648" @default.
- W4366992530 hasPublicationYear "2023" @default.
- W4366992530 type Work @default.
- W4366992530 citedByCount "1" @default.
- W4366992530 countsByYear W43669925302023 @default.
- W4366992530 crossrefType "journal-article" @default.
- W4366992530 hasAuthorship W4366992530A5002681649 @default.
- W4366992530 hasAuthorship W4366992530A5017932055 @default.
- W4366992530 hasAuthorship W4366992530A5066796468 @default.
- W4366992530 hasAuthorship W4366992530A5077168758 @default.
- W4366992530 hasAuthorship W4366992530A5087982944 @default.
- W4366992530 hasConcept C10485038 @default.
- W4366992530 hasConcept C119857082 @default.