Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366992541> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4366992541 endingPage "101246" @default.
- W4366992541 startingPage "101246" @default.
- W4366992541 abstract "An adverse drug reaction (ADR) is a harmful and unwanted disorder that occurs as a result of taking a drug at doses commonly used in humans for the prevention, diagnosis, treatment of disease, or to change physiological function. Reports have shown that about 10% of hospitalizations are due to ADRs. Reporting ADRs has become an essential part of the monitoring and evaluation activities carried out in hospitals. Still, some harmful effects are not reported by drug manufacturers and are unknown to doctors. These effects increase the number of patient hospitalizations. One of the resources that can help in this matter is the huge medical resources available on the web which contain valuable information. Most of these information sources are in the form of text, which should use natural language processing (NLP) techniques for their automatic analysis. The first step in this analysis is to identify texts related to ADR and separate them from unrelated texts. For separating related texts from the massive volume of irrelevant texts, a supervised learning classifier should be used. The purpose of this paper is to apply deep learning models to detect the side effects of drugs in texts using a binary classifier. Deep learning techniques are the state-of-the-art method for text classification. In this article, three approaches based on Recurrent Neural Network (RNN), Gated Recurrent Unit Neural Network (GRU), and Transformer are used for the ADRs identification. The models were trained and evaluated on three different datasets. The results showed that Transformer with 99.12 accuracy is the best model compared to RNN, and GRU. Also, the applied method performs significantly better than previous works." @default.
- W4366992541 created "2023-04-27" @default.
- W4366992541 creator A5000561525 @default.
- W4366992541 creator A5011956874 @default.
- W4366992541 creator A5027690668 @default.
- W4366992541 creator A5036529918 @default.
- W4366992541 date "2023-01-01" @default.
- W4366992541 modified "2023-10-14" @default.
- W4366992541 title "Classifying referring/non-referring ADR in biomedical text using deep learning" @default.
- W4366992541 cites W1992746042 @default.
- W4366992541 cites W2063863180 @default.
- W4366992541 cites W2064794832 @default.
- W4366992541 cites W2071478164 @default.
- W4366992541 cites W2073386434 @default.
- W4366992541 cites W2079842711 @default.
- W4366992541 cites W2125260686 @default.
- W4366992541 cites W2129767020 @default.
- W4366992541 cites W2138768461 @default.
- W4366992541 cites W2160194473 @default.
- W4366992541 cites W2590462354 @default.
- W4366992541 cites W2890681735 @default.
- W4366992541 cites W2899292521 @default.
- W4366992541 cites W2904867915 @default.
- W4366992541 cites W3022253478 @default.
- W4366992541 cites W3095380161 @default.
- W4366992541 doi "https://doi.org/10.1016/j.imu.2023.101246" @default.
- W4366992541 hasPublicationYear "2023" @default.
- W4366992541 type Work @default.
- W4366992541 citedByCount "0" @default.
- W4366992541 crossrefType "journal-article" @default.
- W4366992541 hasAuthorship W4366992541A5000561525 @default.
- W4366992541 hasAuthorship W4366992541A5011956874 @default.
- W4366992541 hasAuthorship W4366992541A5027690668 @default.
- W4366992541 hasAuthorship W4366992541A5036529918 @default.
- W4366992541 hasBestOaLocation W43669925411 @default.
- W4366992541 hasConcept C108583219 @default.
- W4366992541 hasConcept C119599485 @default.
- W4366992541 hasConcept C119857082 @default.
- W4366992541 hasConcept C12267149 @default.
- W4366992541 hasConcept C127413603 @default.
- W4366992541 hasConcept C147168706 @default.
- W4366992541 hasConcept C154945302 @default.
- W4366992541 hasConcept C165801399 @default.
- W4366992541 hasConcept C204321447 @default.
- W4366992541 hasConcept C2780035454 @default.
- W4366992541 hasConcept C2780542314 @default.
- W4366992541 hasConcept C2993432071 @default.
- W4366992541 hasConcept C41008148 @default.
- W4366992541 hasConcept C50644808 @default.
- W4366992541 hasConcept C66322947 @default.
- W4366992541 hasConcept C66905080 @default.
- W4366992541 hasConcept C71924100 @default.
- W4366992541 hasConcept C95623464 @default.
- W4366992541 hasConcept C98274493 @default.
- W4366992541 hasConceptScore W4366992541C108583219 @default.
- W4366992541 hasConceptScore W4366992541C119599485 @default.
- W4366992541 hasConceptScore W4366992541C119857082 @default.
- W4366992541 hasConceptScore W4366992541C12267149 @default.
- W4366992541 hasConceptScore W4366992541C127413603 @default.
- W4366992541 hasConceptScore W4366992541C147168706 @default.
- W4366992541 hasConceptScore W4366992541C154945302 @default.
- W4366992541 hasConceptScore W4366992541C165801399 @default.
- W4366992541 hasConceptScore W4366992541C204321447 @default.
- W4366992541 hasConceptScore W4366992541C2780035454 @default.
- W4366992541 hasConceptScore W4366992541C2780542314 @default.
- W4366992541 hasConceptScore W4366992541C2993432071 @default.
- W4366992541 hasConceptScore W4366992541C41008148 @default.
- W4366992541 hasConceptScore W4366992541C50644808 @default.
- W4366992541 hasConceptScore W4366992541C66322947 @default.
- W4366992541 hasConceptScore W4366992541C66905080 @default.
- W4366992541 hasConceptScore W4366992541C71924100 @default.
- W4366992541 hasConceptScore W4366992541C95623464 @default.
- W4366992541 hasConceptScore W4366992541C98274493 @default.
- W4366992541 hasFunder F4320322245 @default.
- W4366992541 hasLocation W43669925411 @default.
- W4366992541 hasOpenAccess W4366992541 @default.
- W4366992541 hasPrimaryLocation W43669925411 @default.
- W4366992541 hasRelatedWork W2795261237 @default.
- W4366992541 hasRelatedWork W3014300295 @default.
- W4366992541 hasRelatedWork W3164822677 @default.
- W4366992541 hasRelatedWork W4223943233 @default.
- W4366992541 hasRelatedWork W4225161397 @default.
- W4366992541 hasRelatedWork W4312200629 @default.
- W4366992541 hasRelatedWork W4360585206 @default.
- W4366992541 hasRelatedWork W4364306694 @default.
- W4366992541 hasRelatedWork W4380075502 @default.
- W4366992541 hasRelatedWork W4380086463 @default.
- W4366992541 hasVolume "39" @default.
- W4366992541 isParatext "false" @default.
- W4366992541 isRetracted "false" @default.
- W4366992541 workType "article" @default.