Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366992991> ?p ?o ?g. }
- W4366992991 endingPage "1863.e3" @default.
- W4366992991 startingPage "1855" @default.
- W4366992991 abstract "•Working memory performance is linked to frequency-specific neural activity •Different to-be-remembered items are associated with different beta (25 Hz) phases •Theta phase seems to coordinate behaviorally relevant beta-band activity •Rhythmic temporal coordination helps to prevent representational conflicts Selective attention 1 Moore T. Zirnsak M. Neural mechanisms of selective visual attention. Annu. Rev. Psychol. 2017; 68: 47-72https://doi.org/10.1146/annurev-psych-122414-033400 Crossref PubMed Scopus (219) Google Scholar is characterized by alternating states associated with either attentional sampling or attentional shifting, helping to prevent functional conflicts by isolating function-specific neural activity in time. 2 Fiebelkorn I.C. Kastner S. Functional specialization in the attention network. Annu. Rev. Psychol. 2020; 71: 221-249https://doi.org/10.1146/annurev-psych-010418-103429 Crossref PubMed Scopus (66) Google Scholar ,3 Fiebelkorn I.C. Kastner S. A rhythmic theory of attention. Trends Cogn. Sci. 2019; 23: 87-101https://doi.org/10.1016/j.tics.2018.11.009 Abstract Full Text Full Text PDF PubMed Scopus (172) Google Scholar ,4 Benedetto A. Morrone M.C. Tomassini A. The common rhythm of action and perception. J. Cogn. Neurosci. 2020; 32: 187-200https://doi.org/10.1162/jocn_a_01436 Crossref PubMed Scopus (27) Google Scholar ,5 Landau A.N. Neuroscience: A mechanism for rhythmic sampling in vision. Curr. Biol. 2018; 28: R830-R832https://doi.org/10.1016/j.cub.2018.05.081 Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar We hypothesized that such rhythmic temporal coordination might also help to prevent representational conflicts during working memory. 6 Baddeley A. Working memory. Science. 1992; 255: 556-559https://doi.org/10.1126/science.1736359 Crossref PubMed Scopus (4383) Google Scholar Multiple items can be simultaneously held in working memory, and these items can be represented by overlapping neural populations. 7 Panichello M.F. Buschman T.J. Shared mechanisms underlie the control of working memory and attention. Nature. 2021; 592: 601-605https://doi.org/10.1038/s41586-021-03390-w Crossref PubMed Scopus (71) Google Scholar ,8 Warden M.R. Miller E.K. The representation of multiple objects in prefrontal neuronal delay activity. Cereb. Cortex. 2007; 17: i41-i50https://doi.org/10.1093/cercor/bhm070 Crossref PubMed Scopus (81) Google Scholar ,9 Rigotti M. Barak O. Warden M.R. Wang X.J. Daw N.D. Miller E.K. Fusi S. The importance of mixed selectivity in complex cognitive tasks. Nature. 2013; 497: 585-590https://doi.org/10.1038/nature12160 Crossref PubMed Scopus (772) Google Scholar Traditional theories propose that the short-term storage of to-be-remembered items occurs through persistent neural activity, 10 Constantinidis C. Funahashi S. Lee D. Murray J.D. Qi X.L. Wang M. Arnsten A.F.T. Persistent spiking activity underlies working memory. J. Neurosci. 2018; 38: 7020-7028https://doi.org/10.1523/JNEUROSCI.2486-17.2018 Crossref PubMed Scopus (125) Google Scholar ,11 Fuster J.M. Alexander G.E. Neuron activity related to short-term memory. Science. 1971; 173: 652-654https://doi.org/10.1126/science.173.3997.652 Crossref PubMed Scopus (1360) Google Scholar ,12 Goldman-Rakic P.S. Cellular basis of working memory. Neuron. 1995; 14: 477-485https://doi.org/10.1016/0896-6273(95)90304-6 Abstract Full Text PDF PubMed Scopus (1886) Google Scholar but when neurons are simultaneously representing multiple items, persistent activity creates a potential for representational conflicts. In comparison, more recent, “activity-silent” theories of working memory propose that synaptic changes also contribute to short-term storage of to-be-remembered items. 13 Miller E.K. Lundqvist M. Bastos A.M. Working Memory 2.0. Neuron. 2018; 100: 463-475https://doi.org/10.1016/j.neuron.2018.09.023 Abstract Full Text Full Text PDF PubMed Scopus (271) Google Scholar ,14 Kamiński J. Rutishauser U. Between persistently active and activity-silent frameworks: novel vistas on the cellular basis of working memory. Ann. NY Acad. Sci. 2020; 1464: 64-75https://doi.org/10.1111/nyas.14213 Crossref PubMed Scopus (31) Google Scholar ,15 Lundqvist M. Herman P. Miller E.K. Working memory: delay activity, yes! Persistent activity? Maybe not. J. Neurosci. 2018; 38: 7013-7019https://doi.org/10.1523/JNEUROSCI.2485-17.2018 Crossref PubMed Scopus (124) Google Scholar ,16 Stokes M.G. ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework. Trends Cogn. Sci. 2015; 19: 394-405https://doi.org/10.1016/j.tics.2015.05.004 Abstract Full Text Full Text PDF PubMed Scopus (385) Google Scholar Transient bursts in neural activity, 17 Lundqvist M. Rose J. Herman P. Brincat S.L. Buschman T.J. Miller E.K. Gamma and beta bursts underlie working memory. Neuron. 2016; 90: 152-164https://doi.org/10.1016/j.neuron.2016.02.028 Abstract Full Text Full Text PDF PubMed Scopus (380) Google Scholar rather than persistent activity, could serve to occasionally refresh these synaptic changes. Here, we used EEG and response times to test whether rhythmic temporal coordination helps to isolate neural activity associated with different to-be-remembered items, thereby helping to prevent representational conflicts. Consistent with this hypothesis, we report that the relative strength of different item representations alternates over time as a function of the frequency-specific phase. Although RTs were linked to theta (∼6 Hz) and beta (∼25 Hz) phases during a memory delay, the relative strength of item representations only alternated as a function of the beta phase. The present findings (1) are consistent with rhythmic temporal coordination being a general mechanism for preventing functional or representational conflicts during cognitive processes and (2) inform models describing the role of oscillatory dynamics in organizing working memory. 13 Miller E.K. Lundqvist M. Bastos A.M. Working Memory 2.0. Neuron. 2018; 100: 463-475https://doi.org/10.1016/j.neuron.2018.09.023 Abstract Full Text Full Text PDF PubMed Scopus (271) Google Scholar ,18 Lisman J.E. Idiart M.A. Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science. 1995; 267: 1512-1515 Crossref PubMed Scopus (1054) Google Scholar ,19 Siegel M. Warden M.R. Miller E.K. Phase-dependent neuronal coding of objects in short-term memory. Proc. Natl. Acad. Sci. USA. 2009; 106: 21341-21346https://doi.org/10.1073/pnas.0908193106 Crossref PubMed Scopus (388) Google Scholar ,20 Bahramisharif A. Jensen O. Jacobs J. Lisman J. Serial representation of items during working memory maintenance at letter-selective cortical sites. PLoS Biol. 2018; 16: e2003805https://doi.org/10.1371/journal.pbio.2003805 Crossref PubMed Scopus (48) Google Scholar ,21 Kamiński J. Brzezicka A. Mamelak A.N. Rutishauser U. Combined phase-rate coding by persistently active neurons as a mechanism for maintaining multiple items in working memory in humans. Neuron. 2020; 106 (256-264.e3)https://doi.org/10.1016/j.neuron.2020.01.032 Abstract Full Text Full Text PDF PubMed Scopus (19) Google Scholar Selective attention 1 Moore T. Zirnsak M. Neural mechanisms of selective visual attention. Annu. Rev. Psychol. 2017; 68: 47-72https://doi.org/10.1146/annurev-psych-122414-033400 Crossref PubMed Scopus (219) Google Scholar is characterized by alternating states associated with either attentional sampling or attentional shifting, helping to prevent functional conflicts by isolating function-specific neural activity in time. 2 Fiebelkorn I.C. Kastner S. Functional specialization in the attention network. Annu. Rev. Psychol. 2020; 71: 221-249https://doi.org/10.1146/annurev-psych-010418-103429 Crossref PubMed Scopus (66) Google Scholar ,3 Fiebelkorn I.C. Kastner S. A rhythmic theory of attention. Trends Cogn. Sci. 2019; 23: 87-101https://doi.org/10.1016/j.tics.2018.11.009 Abstract Full Text Full Text PDF PubMed Scopus (172) Google Scholar ,4 Benedetto A. Morrone M.C. Tomassini A. The common rhythm of action and perception. J. Cogn. Neurosci. 2020; 32: 187-200https://doi.org/10.1162/jocn_a_01436 Crossref PubMed Scopus (27) Google Scholar ,5 Landau A.N. Neuroscience: A mechanism for rhythmic sampling in vision. Curr. Biol. 2018; 28: R830-R832https://doi.org/10.1016/j.cub.2018.05.081 Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar We hypothesized that such rhythmic temporal coordination might also help to prevent representational conflicts during working memory. 6 Baddeley A. Working memory. Science. 1992; 255: 556-559https://doi.org/10.1126/science.1736359 Crossref PubMed Scopus (4383) Google Scholar Multiple items can be simultaneously held in working memory, and these items can be represented by overlapping neural populations. 7 Panichello M.F. Buschman T.J. Shared mechanisms underlie the control of working memory and attention. Nature. 2021; 592: 601-605https://doi.org/10.1038/s41586-021-03390-w Crossref PubMed Scopus (71) Google Scholar ,8 Warden M.R. Miller E.K. The representation of multiple objects in prefrontal neuronal delay activity. Cereb. Cortex. 2007; 17: i41-i50https://doi.org/10.1093/cercor/bhm070 Crossref PubMed Scopus (81) Google Scholar ,9 Rigotti M. Barak O. Warden M.R. Wang X.J. Daw N.D. Miller E.K. Fusi S. The importance of mixed selectivity in complex cognitive tasks. Nature. 2013; 497: 585-590https://doi.org/10.1038/nature12160 Crossref PubMed Scopus (772) Google Scholar Traditional theories propose that the short-term storage of to-be-remembered items occurs through persistent neural activity, 10 Constantinidis C. Funahashi S. Lee D. Murray J.D. Qi X.L. Wang M. Arnsten A.F.T. Persistent spiking activity underlies working memory. J. Neurosci. 2018; 38: 7020-7028https://doi.org/10.1523/JNEUROSCI.2486-17.2018 Crossref PubMed Scopus (125) Google Scholar ,11 Fuster J.M. Alexander G.E. Neuron activity related to short-term memory. Science. 1971; 173: 652-654https://doi.org/10.1126/science.173.3997.652 Crossref PubMed Scopus (1360) Google Scholar ,12 Goldman-Rakic P.S. Cellular basis of working memory. Neuron. 1995; 14: 477-485https://doi.org/10.1016/0896-6273(95)90304-6 Abstract Full Text PDF PubMed Scopus (1886) Google Scholar but when neurons are simultaneously representing multiple items, persistent activity creates a potential for representational conflicts. In comparison, more recent, “activity-silent” theories of working memory propose that synaptic changes also contribute to short-term storage of to-be-remembered items. 13 Miller E.K. Lundqvist M. Bastos A.M. Working Memory 2.0. Neuron. 2018; 100: 463-475https://doi.org/10.1016/j.neuron.2018.09.023 Abstract Full Text Full Text PDF PubMed Scopus (271) Google Scholar ,14 Kamiński J. Rutishauser U. Between persistently active and activity-silent frameworks: novel vistas on the cellular basis of working memory. Ann. NY Acad. Sci. 2020; 1464: 64-75https://doi.org/10.1111/nyas.14213 Crossref PubMed Scopus (31) Google Scholar ,15 Lundqvist M. Herman P. Miller E.K. Working memory: delay activity, yes! Persistent activity? Maybe not. J. Neurosci. 2018; 38: 7013-7019https://doi.org/10.1523/JNEUROSCI.2485-17.2018 Crossref PubMed Scopus (124) Google Scholar ,16 Stokes M.G. ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework. Trends Cogn. Sci. 2015; 19: 394-405https://doi.org/10.1016/j.tics.2015.05.004 Abstract Full Text Full Text PDF PubMed Scopus (385) Google Scholar Transient bursts in neural activity, 17 Lundqvist M. Rose J. Herman P. Brincat S.L. Buschman T.J. Miller E.K. Gamma and beta bursts underlie working memory. Neuron. 2016; 90: 152-164https://doi.org/10.1016/j.neuron.2016.02.028 Abstract Full Text Full Text PDF PubMed Scopus (380) Google Scholar rather than persistent activity, could serve to occasionally refresh these synaptic changes. Here, we used EEG and response times to test whether rhythmic temporal coordination helps to isolate neural activity associated with different to-be-remembered items, thereby helping to prevent representational conflicts. Consistent with this hypothesis, we report that the relative strength of different item representations alternates over time as a function of the frequency-specific phase. Although RTs were linked to theta (∼6 Hz) and beta (∼25 Hz) phases during a memory delay, the relative strength of item representations only alternated as a function of the beta phase. The present findings (1) are consistent with rhythmic temporal coordination being a general mechanism for preventing functional or representational conflicts during cognitive processes and (2) inform models describing the role of oscillatory dynamics in organizing working memory. 13 Miller E.K. Lundqvist M. Bastos A.M. Working Memory 2.0. Neuron. 2018; 100: 463-475https://doi.org/10.1016/j.neuron.2018.09.023 Abstract Full Text Full Text PDF PubMed Scopus (271) Google Scholar ,18 Lisman J.E. Idiart M.A. Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science. 1995; 267: 1512-1515 Crossref PubMed Scopus (1054) Google Scholar ,19 Siegel M. Warden M.R. Miller E.K. Phase-dependent neuronal coding of objects in short-term memory. Proc. Natl. Acad. Sci. USA. 2009; 106: 21341-21346https://doi.org/10.1073/pnas.0908193106 Crossref PubMed Scopus (388) Google Scholar ,20 Bahramisharif A. Jensen O. Jacobs J. Lisman J. Serial representation of items during working memory maintenance at letter-selective cortical sites. PLoS Biol. 2018; 16: e2003805https://doi.org/10.1371/journal.pbio.2003805 Crossref PubMed Scopus (48) Google Scholar ,21 Kamiński J. Brzezicka A. Mamelak A.N. Rutishauser U. Combined phase-rate coding by persistently active neurons as a mechanism for maintaining multiple items in working memory in humans. Neuron. 2020; 106 (256-264.e3)https://doi.org/10.1016/j.neuron.2020.01.032 Abstract Full Text Full Text PDF PubMed Scopus (19) Google Scholar" @default.
- W4366992991 created "2023-04-27" @default.
- W4366992991 creator A5037462498 @default.
- W4366992991 creator A5052380466 @default.
- W4366992991 creator A5076275978 @default.
- W4366992991 date "2023-05-01" @default.
- W4366992991 modified "2023-09-29" @default.
- W4366992991 title "Rhythmic temporal coordination of neural activity prevents representational conflict during working memory" @default.
- W4366992991 cites W1596515083 @default.
- W4366992991 cites W1635648989 @default.
- W4366992991 cites W1787419497 @default.
- W4366992991 cites W1836207607 @default.
- W4366992991 cites W1939596644 @default.
- W4366992991 cites W1967950674 @default.
- W4366992991 cites W1970903379 @default.
- W4366992991 cites W1974598846 @default.
- W4366992991 cites W1975844987 @default.
- W4366992991 cites W1976211348 @default.
- W4366992991 cites W1976804176 @default.
- W4366992991 cites W1978389345 @default.
- W4366992991 cites W1982695759 @default.
- W4366992991 cites W1991124987 @default.
- W4366992991 cites W2010967971 @default.
- W4366992991 cites W2014966184 @default.
- W4366992991 cites W2031534534 @default.
- W4366992991 cites W2033708181 @default.
- W4366992991 cites W2038861832 @default.
- W4366992991 cites W2050113708 @default.
- W4366992991 cites W2056336718 @default.
- W4366992991 cites W2058491602 @default.
- W4366992991 cites W2063007271 @default.
- W4366992991 cites W2070900790 @default.
- W4366992991 cites W2100800904 @default.
- W4366992991 cites W2106654511 @default.
- W4366992991 cites W2112927743 @default.
- W4366992991 cites W2116092270 @default.
- W4366992991 cites W2118852700 @default.
- W4366992991 cites W2119565218 @default.
- W4366992991 cites W2124688531 @default.
- W4366992991 cites W2138151562 @default.
- W4366992991 cites W2149095485 @default.
- W4366992991 cites W2155754335 @default.
- W4366992991 cites W2156430527 @default.
- W4366992991 cites W2160904011 @default.
- W4366992991 cites W2162809807 @default.
- W4366992991 cites W2166073443 @default.
- W4366992991 cites W2166331154 @default.
- W4366992991 cites W2168462263 @default.
- W4366992991 cites W2255581062 @default.
- W4366992991 cites W2295763703 @default.
- W4366992991 cites W2297363866 @default.
- W4366992991 cites W2340942985 @default.
- W4366992991 cites W2412435798 @default.
- W4366992991 cites W2468463735 @default.
- W4366992991 cites W2549980860 @default.
- W4366992991 cites W2603968080 @default.
- W4366992991 cites W2610396255 @default.
- W4366992991 cites W2624260960 @default.
- W4366992991 cites W2810774520 @default.
- W4366992991 cites W2885859974 @default.
- W4366992991 cites W2886535829 @default.
- W4366992991 cites W2887723978 @default.
- W4366992991 cites W2887765118 @default.
- W4366992991 cites W2888110720 @default.
- W4366992991 cites W2888238712 @default.
- W4366992991 cites W2898524098 @default.
- W4366992991 cites W2906197736 @default.
- W4366992991 cites W2910460880 @default.
- W4366992991 cites W2943275803 @default.
- W4366992991 cites W2950800702 @default.
- W4366992991 cites W2951786548 @default.
- W4366992991 cites W2952438722 @default.
- W4366992991 cites W2953148995 @default.
- W4366992991 cites W2967094051 @default.
- W4366992991 cites W2972981651 @default.
- W4366992991 cites W2979994211 @default.
- W4366992991 cites W3006638882 @default.
- W4366992991 cites W3007176118 @default.
- W4366992991 cites W3016173469 @default.
- W4366992991 cites W3036274064 @default.
- W4366992991 cites W3087122456 @default.
- W4366992991 cites W3104639838 @default.
- W4366992991 cites W3110151578 @default.
- W4366992991 cites W3120115910 @default.
- W4366992991 cites W3129905022 @default.
- W4366992991 cites W3140601242 @default.
- W4366992991 cites W3164453294 @default.
- W4366992991 cites W3191039436 @default.
- W4366992991 cites W3201905318 @default.
- W4366992991 cites W4213346165 @default.
- W4366992991 cites W4225746223 @default.
- W4366992991 cites W4293499661 @default.
- W4366992991 cites W4310113628 @default.
- W4366992991 cites W4312210577 @default.
- W4366992991 doi "https://doi.org/10.1016/j.cub.2023.03.088" @default.
- W4366992991 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37100058" @default.
- W4366992991 hasPublicationYear "2023" @default.
- W4366992991 type Work @default.