Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366993205> ?p ?o ?g. }
- W4366993205 endingPage "121491" @default.
- W4366993205 startingPage "121491" @default.
- W4366993205 abstract "The Black Sea is the largest euxinic seawater basin with H2S at depths of below 90 m. Previously found that the presence of H2S in water was caused by microbial sulfate reduction. Herein, we report the sulfur isotopic composition of sulfate and sulfide in seawater at stations in the central part of the Black Sea, especially from the Bottom Convective Layer (BCL) located below a water depth of 1750 m. Our study shows that the sulfur isotopic composition of sulfate (δ34S(SO4)) in the surface layer of the oxic zone is +21.1‰ ± 0.1‰ relative to the Vienna Canyon Diablo troilite (VCDT), and does not differ from sulfate in the Mediterranean Sea. In the BCL, the average δ34S(SO4) value is +23.0‰ ± 0.2‰, which does not change vertically or laterally owing to effective convective mixing. The sulfur isotopic composition of H2S varies from −40.0‰ to −41.9‰ between 200 m water depth down to the seafloor with an average δ34S(H2S) value of −40.6‰ ± 0.4‰ for the BCL. Based on the water mass balance and sulfur isotopic composition of sulfate in the relevant water masses affecting the BCL, we have formulated a model to calculate the sulfate reduction rate in the BCL. After evaluating the sulfate and sulfide sources in the BCL, we assumed that the only apparent sulfide source is a bacterial sulfate reduction in the water column, and the main sulfate source is a mixture of water from the Black Sea and the lower Bosporus current with an initial sulfate isotopic composition of +21‰. The weak water exchange in the BCL leads to the largest observed isotopic difference ΔSR = δ34S(SO4) − δ34S(H2S) of 63.6‰ between sulfate and sulfide in the sulfidic water column of the Black Sea. To achieve a steady state with respect to the sulfate isotopic composition +23‰ in the BCL, an average sulfate reduction (SR) rate of 1.1 ± 0.1 nmol L−1 day−1 is required. A steady state relative to sulfur isotopic composition of sulfate in the BCL water was established 4200 years ago. The estimated residence time of H2S was 1.5 times shorter (946 years) than that of sulfate (1390 years). The latter is close to the water renewal time of the BCL (1432 years). Different residence times of sulfide and sulfate in the BCL are explained using their different fluxes from the BCL. Sulfate is mainly removed from the BCL via vertical advection, while a considerable part of the sulfide generated in the BCL (1/3 of total annual production) is probably spent on the sulfidation (FeS → FeS2) of muddy turbidites. The estimated annual H2S production in the BCL is 0.78 ± 0.07 Tg. The developed model predicts that the sulfide concentration in the BCL remains practically unchanged (380 ± 5 μM) over the last 1800 years (after 5700 years from the onset of anoxia)." @default.
- W4366993205 created "2023-04-27" @default.
- W4366993205 creator A5052337127 @default.
- W4366993205 creator A5059495029 @default.
- W4366993205 date "2023-07-01" @default.
- W4366993205 modified "2023-09-26" @default.
- W4366993205 title "Isotopic constraints on the sulfur cycle of the Bottom Convective Layer in the Black Sea" @default.
- W4366993205 cites W1968372785 @default.
- W4366993205 cites W1968465625 @default.
- W4366993205 cites W1969222867 @default.
- W4366993205 cites W1969873771 @default.
- W4366993205 cites W1971120719 @default.
- W4366993205 cites W1975278947 @default.
- W4366993205 cites W1975672886 @default.
- W4366993205 cites W1992605113 @default.
- W4366993205 cites W2000643582 @default.
- W4366993205 cites W2006895540 @default.
- W4366993205 cites W2009778629 @default.
- W4366993205 cites W2010407064 @default.
- W4366993205 cites W2018065757 @default.
- W4366993205 cites W2018843634 @default.
- W4366993205 cites W2023587107 @default.
- W4366993205 cites W2027184874 @default.
- W4366993205 cites W2027595497 @default.
- W4366993205 cites W2032550954 @default.
- W4366993205 cites W2043894211 @default.
- W4366993205 cites W2054380694 @default.
- W4366993205 cites W2054645658 @default.
- W4366993205 cites W2055889421 @default.
- W4366993205 cites W2056348863 @default.
- W4366993205 cites W2072320126 @default.
- W4366993205 cites W2076193052 @default.
- W4366993205 cites W2077854530 @default.
- W4366993205 cites W2081859087 @default.
- W4366993205 cites W2083611679 @default.
- W4366993205 cites W2088158018 @default.
- W4366993205 cites W2100658623 @default.
- W4366993205 cites W2107225219 @default.
- W4366993205 cites W2109747916 @default.
- W4366993205 cites W2128214815 @default.
- W4366993205 cites W2139685023 @default.
- W4366993205 cites W2143408521 @default.
- W4366993205 cites W2146689560 @default.
- W4366993205 cites W2151767190 @default.
- W4366993205 cites W2163478349 @default.
- W4366993205 cites W2184940573 @default.
- W4366993205 cites W2201872948 @default.
- W4366993205 cites W2752566793 @default.
- W4366993205 cites W2792093000 @default.
- W4366993205 cites W2938051254 @default.
- W4366993205 cites W4283316641 @default.
- W4366993205 doi "https://doi.org/10.1016/j.chemgeo.2023.121491" @default.
- W4366993205 hasPublicationYear "2023" @default.
- W4366993205 type Work @default.
- W4366993205 citedByCount "0" @default.
- W4366993205 crossrefType "journal-article" @default.
- W4366993205 hasAuthorship W4366993205A5052337127 @default.
- W4366993205 hasAuthorship W4366993205A5059495029 @default.
- W4366993205 hasConcept C107872376 @default.
- W4366993205 hasConcept C111368507 @default.
- W4366993205 hasConcept C122846477 @default.
- W4366993205 hasConcept C127313418 @default.
- W4366993205 hasConcept C151730666 @default.
- W4366993205 hasConcept C156622251 @default.
- W4366993205 hasConcept C17409809 @default.
- W4366993205 hasConcept C178790620 @default.
- W4366993205 hasConcept C185592680 @default.
- W4366993205 hasConcept C197248824 @default.
- W4366993205 hasConcept C199289684 @default.
- W4366993205 hasConcept C2776152364 @default.
- W4366993205 hasConcept C2778343803 @default.
- W4366993205 hasConcept C2780416900 @default.
- W4366993205 hasConcept C2780596425 @default.
- W4366993205 hasConcept C518881349 @default.
- W4366993205 hasConcept C74826761 @default.
- W4366993205 hasConceptScore W4366993205C107872376 @default.
- W4366993205 hasConceptScore W4366993205C111368507 @default.
- W4366993205 hasConceptScore W4366993205C122846477 @default.
- W4366993205 hasConceptScore W4366993205C127313418 @default.
- W4366993205 hasConceptScore W4366993205C151730666 @default.
- W4366993205 hasConceptScore W4366993205C156622251 @default.
- W4366993205 hasConceptScore W4366993205C17409809 @default.
- W4366993205 hasConceptScore W4366993205C178790620 @default.
- W4366993205 hasConceptScore W4366993205C185592680 @default.
- W4366993205 hasConceptScore W4366993205C197248824 @default.
- W4366993205 hasConceptScore W4366993205C199289684 @default.
- W4366993205 hasConceptScore W4366993205C2776152364 @default.
- W4366993205 hasConceptScore W4366993205C2778343803 @default.
- W4366993205 hasConceptScore W4366993205C2780416900 @default.
- W4366993205 hasConceptScore W4366993205C2780596425 @default.
- W4366993205 hasConceptScore W4366993205C518881349 @default.
- W4366993205 hasConceptScore W4366993205C74826761 @default.
- W4366993205 hasLocation W43669932051 @default.
- W4366993205 hasOpenAccess W4366993205 @default.
- W4366993205 hasPrimaryLocation W43669932051 @default.
- W4366993205 hasRelatedWork W1975672886 @default.
- W4366993205 hasRelatedWork W1984879075 @default.
- W4366993205 hasRelatedWork W2020048710 @default.