Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366995978> ?p ?o ?g. }
- W4366995978 endingPage "e0284791" @default.
- W4366995978 startingPage "e0284791" @default.
- W4366995978 abstract "An electrocardiograph (ECG) is widely used in diagnosis and prediction of cardiovascular diseases (CVDs). The traditional ECG classification methods have complex signal processing phases that leads to expensive designs. This paper provides a deep learning (DL) based system that employs the convolutional neural networks (CNNs) for classification of ECG signals present in PhysioNet MIT-BIH Arrhythmia database. The proposed system implements 1-D convolutional deep residual neural network (ResNet) model that performs feature extraction by directly using the input heartbeats. We have used synthetic minority oversampling technique (SMOTE) that process class-imbalance problem in the training dataset and effectively classifies the five heartbeat types in the test dataset. The classifier’s performance is evaluated with ten-fold cross validation (CV) using accuracy, precision, sensitivity, F1-score, and kappa. We have obtained an average accuracy of 98.63%, precision of 92.86%, sensitivity of 92.41%, and specificity of 99.06%. The average F1-score and Kappa obtained were 92.63% and 95.5% respectively. The study shows that proposed ResNet performs well with deep layers compared to other 1-D CNNs." @default.
- W4366995978 created "2023-04-27" @default.
- W4366995978 creator A5019839903 @default.
- W4366995978 creator A5053314319 @default.
- W4366995978 creator A5083630472 @default.
- W4366995978 creator A5089791724 @default.
- W4366995978 date "2023-04-25" @default.
- W4366995978 modified "2023-09-25" @default.
- W4366995978 title "ECG classification using 1-D convolutional deep residual neural network" @default.
- W4366995978 cites W1901624583 @default.
- W4366995978 cites W1968983915 @default.
- W4366995978 cites W1988743659 @default.
- W4366995978 cites W2018651439 @default.
- W4366995978 cites W2026775633 @default.
- W4366995978 cites W2077967181 @default.
- W4366995978 cites W2095409369 @default.
- W4366995978 cites W2099454382 @default.
- W4366995978 cites W2118922542 @default.
- W4366995978 cites W2167865572 @default.
- W4366995978 cites W2172107473 @default.
- W4366995978 cites W2181608983 @default.
- W4366995978 cites W2189239210 @default.
- W4366995978 cites W2291961022 @default.
- W4366995978 cites W2310909169 @default.
- W4366995978 cites W2473675820 @default.
- W4366995978 cites W2482102801 @default.
- W4366995978 cites W2605056515 @default.
- W4366995978 cites W2612184698 @default.
- W4366995978 cites W2621205740 @default.
- W4366995978 cites W2748902594 @default.
- W4366995978 cites W2775229114 @default.
- W4366995978 cites W2793188405 @default.
- W4366995978 cites W2795025935 @default.
- W4366995978 cites W2797694788 @default.
- W4366995978 cites W2806806521 @default.
- W4366995978 cites W2886034601 @default.
- W4366995978 cites W2886982273 @default.
- W4366995978 cites W2899434936 @default.
- W4366995978 cites W2911490596 @default.
- W4366995978 cites W2919115771 @default.
- W4366995978 cites W2949352098 @default.
- W4366995978 cites W2962949934 @default.
- W4366995978 cites W2984010107 @default.
- W4366995978 cites W2987011834 @default.
- W4366995978 cites W3013204887 @default.
- W4366995978 cites W3024192584 @default.
- W4366995978 cites W3035916338 @default.
- W4366995978 cites W3093086118 @default.
- W4366995978 cites W3096527050 @default.
- W4366995978 cites W3101294892 @default.
- W4366995978 cites W3106455851 @default.
- W4366995978 cites W3107843842 @default.
- W4366995978 cites W3132796384 @default.
- W4366995978 cites W3134537993 @default.
- W4366995978 cites W3170087560 @default.
- W4366995978 cites W3174431213 @default.
- W4366995978 cites W3197424138 @default.
- W4366995978 cites W4200122681 @default.
- W4366995978 cites W4213451870 @default.
- W4366995978 doi "https://doi.org/10.1371/journal.pone.0284791" @default.
- W4366995978 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37098024" @default.
- W4366995978 hasPublicationYear "2023" @default.
- W4366995978 type Work @default.
- W4366995978 citedByCount "1" @default.
- W4366995978 countsByYear W43669959782023 @default.
- W4366995978 crossrefType "journal-article" @default.
- W4366995978 hasAuthorship W4366995978A5019839903 @default.
- W4366995978 hasAuthorship W4366995978A5053314319 @default.
- W4366995978 hasAuthorship W4366995978A5083630472 @default.
- W4366995978 hasAuthorship W4366995978A5089791724 @default.
- W4366995978 hasBestOaLocation W43669959781 @default.
- W4366995978 hasConcept C108583219 @default.
- W4366995978 hasConcept C11413529 @default.
- W4366995978 hasConcept C119857082 @default.
- W4366995978 hasConcept C13852961 @default.
- W4366995978 hasConcept C148524875 @default.
- W4366995978 hasConcept C153180895 @default.
- W4366995978 hasConcept C154945302 @default.
- W4366995978 hasConcept C155512373 @default.
- W4366995978 hasConcept C163864269 @default.
- W4366995978 hasConcept C197323446 @default.
- W4366995978 hasConcept C2524010 @default.
- W4366995978 hasConcept C27181475 @default.
- W4366995978 hasConcept C2776257435 @default.
- W4366995978 hasConcept C2778724333 @default.
- W4366995978 hasConcept C31258907 @default.
- W4366995978 hasConcept C33923547 @default.
- W4366995978 hasConcept C38652104 @default.
- W4366995978 hasConcept C41008148 @default.
- W4366995978 hasConcept C50644808 @default.
- W4366995978 hasConcept C52622490 @default.
- W4366995978 hasConcept C81363708 @default.
- W4366995978 hasConcept C95623464 @default.
- W4366995978 hasConceptScore W4366995978C108583219 @default.
- W4366995978 hasConceptScore W4366995978C11413529 @default.
- W4366995978 hasConceptScore W4366995978C119857082 @default.
- W4366995978 hasConceptScore W4366995978C13852961 @default.
- W4366995978 hasConceptScore W4366995978C148524875 @default.