Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366996033> ?p ?o ?g. }
- W4366996033 endingPage "e0284842" @default.
- W4366996033 startingPage "e0284842" @default.
- W4366996033 abstract "Cannabis flower odour is an important aspect of product quality as it impacts the sensory experience when administered, which can affect therapeutic outcomes in paediatric patient populations who may reject unpalatable products. However, the cannabis industry has a reputation for having products with inconsistent odour descriptions and misattributed strain names due to the costly and laborious nature of sensory testing. Herein, we evaluate the potential of using odour vector modelling for predicting the odour intensity of cannabis products. Odour vector modelling is proposed as a process for transforming routinely produced volatile profiles into odour intensity (OI) profiles which are hypothesised to be more informative to the overall product odour (sensory descriptor; SD). However, the calculation of OI requires compound odour detection thresholds (ODT), which are not available for many of the compounds present in natural volatile profiles. Accordingly, to apply the odour vector modelling process to cannabis, a QSPR statistical model was first produced to predict ODT from physicochemical properties. The model presented herein was produced by polynomial regression with 10-fold cross-validation from 1,274 median ODT values to produce a model with R 2 = 0.6892 and a 10-fold R 2 = 0.6484. This model was then applied to terpenes which lacked experimentally determined ODT values to facilitate vector modelling of cannabis OI profiles. Logistic regression and k-means unsupervised cluster analysis was applied to both the raw terpene data and the transformed OI profiles to predict the SD of 265 cannabis samples and the accuracy of the predictions across the two datasets was compared. Out of the 13 SD categories modelled, OI profiles performed equally well or better than the volatile profiles for 11 of the SD, and across all SD the OI data was on average 21.9% more accurate (p = 0.031). The work herein is the first example of the application of odour vector modelling to complex volatile profiles of natural products and demonstrates the utility of OI profiles for the prediction of cannabis odour. These findings advance both the understanding of the odour modelling process which has previously only been applied to simple mixtures, and the cannabis industry which can utilise this process for more accurate prediction of cannabis odour and thereby reduce unpleasant patient experiences." @default.
- W4366996033 created "2023-04-27" @default.
- W4366996033 creator A5001510995 @default.
- W4366996033 creator A5037162046 @default.
- W4366996033 creator A5039269607 @default.
- W4366996033 creator A5081476771 @default.
- W4366996033 creator A5086470484 @default.
- W4366996033 date "2023-04-25" @default.
- W4366996033 modified "2023-10-17" @default.
- W4366996033 title "Utilisation of QSPR ODT modelling and odour vector modelling to predict Cannabis sativa odour" @default.
- W4366996033 cites W1496234048 @default.
- W4366996033 cites W1967473066 @default.
- W4366996033 cites W1973778497 @default.
- W4366996033 cites W1974239808 @default.
- W4366996033 cites W1978144947 @default.
- W4366996033 cites W1982814660 @default.
- W4366996033 cites W1984641200 @default.
- W4366996033 cites W1992855541 @default.
- W4366996033 cites W1994600332 @default.
- W4366996033 cites W1998376605 @default.
- W4366996033 cites W2017274641 @default.
- W4366996033 cites W2023684060 @default.
- W4366996033 cites W2056917657 @default.
- W4366996033 cites W2063126424 @default.
- W4366996033 cites W2071899853 @default.
- W4366996033 cites W2072035331 @default.
- W4366996033 cites W2081142147 @default.
- W4366996033 cites W2081364727 @default.
- W4366996033 cites W2094982369 @default.
- W4366996033 cites W2103465565 @default.
- W4366996033 cites W2108659084 @default.
- W4366996033 cites W2113136582 @default.
- W4366996033 cites W2117709247 @default.
- W4366996033 cites W2128174730 @default.
- W4366996033 cites W2130113110 @default.
- W4366996033 cites W2152582845 @default.
- W4366996033 cites W2159319600 @default.
- W4366996033 cites W2734982659 @default.
- W4366996033 cites W2738995141 @default.
- W4366996033 cites W2765866238 @default.
- W4366996033 cites W2781755317 @default.
- W4366996033 cites W2786639434 @default.
- W4366996033 cites W2792456883 @default.
- W4366996033 cites W2910459199 @default.
- W4366996033 cites W2915519173 @default.
- W4366996033 cites W2947304608 @default.
- W4366996033 cites W2965073284 @default.
- W4366996033 cites W2965291354 @default.
- W4366996033 cites W2965727542 @default.
- W4366996033 cites W2990124007 @default.
- W4366996033 cites W2995130128 @default.
- W4366996033 cites W2998177544 @default.
- W4366996033 cites W3000187308 @default.
- W4366996033 cites W3005875903 @default.
- W4366996033 cites W3007145402 @default.
- W4366996033 cites W3011533475 @default.
- W4366996033 cites W3035871318 @default.
- W4366996033 cites W3048601043 @default.
- W4366996033 cites W3092204459 @default.
- W4366996033 cites W3124416396 @default.
- W4366996033 cites W3159194790 @default.
- W4366996033 cites W3197127499 @default.
- W4366996033 cites W3211572389 @default.
- W4366996033 cites W4206443192 @default.
- W4366996033 cites W4220669827 @default.
- W4366996033 cites W4280509744 @default.
- W4366996033 cites W4296005787 @default.
- W4366996033 cites W4311107129 @default.
- W4366996033 doi "https://doi.org/10.1371/journal.pone.0284842" @default.
- W4366996033 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37098051" @default.
- W4366996033 hasPublicationYear "2023" @default.
- W4366996033 type Work @default.
- W4366996033 citedByCount "1" @default.
- W4366996033 crossrefType "journal-article" @default.
- W4366996033 hasAuthorship W4366996033A5001510995 @default.
- W4366996033 hasAuthorship W4366996033A5037162046 @default.
- W4366996033 hasAuthorship W4366996033A5039269607 @default.
- W4366996033 hasAuthorship W4366996033A5081476771 @default.
- W4366996033 hasAuthorship W4366996033A5086470484 @default.
- W4366996033 hasBestOaLocation W43669960331 @default.
- W4366996033 hasConcept C118552586 @default.
- W4366996033 hasConcept C119857082 @default.
- W4366996033 hasConcept C12267149 @default.
- W4366996033 hasConcept C127413603 @default.
- W4366996033 hasConcept C151956035 @default.
- W4366996033 hasConcept C152877465 @default.
- W4366996033 hasConcept C154945302 @default.
- W4366996033 hasConcept C170493617 @default.
- W4366996033 hasConcept C183696295 @default.
- W4366996033 hasConcept C185592680 @default.
- W4366996033 hasConcept C186060115 @default.
- W4366996033 hasConcept C2777056318 @default.
- W4366996033 hasConcept C2780871563 @default.
- W4366996033 hasConcept C2908858883 @default.
- W4366996033 hasConcept C2992191599 @default.
- W4366996033 hasConcept C33923547 @default.
- W4366996033 hasConcept C41008148 @default.
- W4366996033 hasConcept C55493867 @default.