Matches in SemOpenAlex for { <https://semopenalex.org/work/W4366996344> ?p ?o ?g. }
- W4366996344 endingPage "e0284695" @default.
- W4366996344 startingPage "e0284695" @default.
- W4366996344 abstract "The accelerated progress in artificial intelligence encourages sophisticated deep learning methods in predicting stock prices. In the meantime, easy accessibility of the stock market in the palm of one's hand has made its behavior more fuzzy, volatile, and complex than ever. The world is looking at an accurate and reliable model that uses text and numerical data which better represents the market's highly volatile and non-linear behavior in a broader spectrum. A research gap exists in accurately predicting a target stock's closing price utilizing the combined numerical and text data. This study uses long short-term memory (LSTM) and gated recurrent unit (GRU) to predict the stock price using stock features alone and incorporating financial news data in conjunction with stock features. The comparative study carried out under identical conditions dispassionately evaluates the importance of incorporating financial news in stock price prediction. Our experiment concludes that incorporating financial news data produces better prediction accuracy than using the stock fundamental features alone. The performances of the model architecture are compared using the standard assessment metrics -Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Correlation Coefficient (R). Furthermore, statistical tests are conducted to further verify the models' robustness and reliability." @default.
- W4366996344 created "2023-04-27" @default.
- W4366996344 creator A5000890501 @default.
- W4366996344 creator A5018541963 @default.
- W4366996344 creator A5029400855 @default.
- W4366996344 creator A5046599607 @default.
- W4366996344 creator A5047290587 @default.
- W4366996344 creator A5054983124 @default.
- W4366996344 creator A5057234652 @default.
- W4366996344 creator A5065742377 @default.
- W4366996344 date "2023-04-25" @default.
- W4366996344 modified "2023-10-17" @default.
- W4366996344 title "A comparative study on effect of news sentiment on stock price prediction with deep learning architecture" @default.
- W4366996344 cites W1689711448 @default.
- W4366996344 cites W1825609847 @default.
- W4366996344 cites W1948566616 @default.
- W4366996344 cites W1966676388 @default.
- W4366996344 cites W1969852690 @default.
- W4366996344 cites W1973030886 @default.
- W4366996344 cites W1980836123 @default.
- W4366996344 cites W1983857060 @default.
- W4366996344 cites W1985156676 @default.
- W4366996344 cites W2001926729 @default.
- W4366996344 cites W2005877787 @default.
- W4366996344 cites W2013255028 @default.
- W4366996344 cites W2053615983 @default.
- W4366996344 cites W2064675550 @default.
- W4366996344 cites W2066995518 @default.
- W4366996344 cites W2068805783 @default.
- W4366996344 cites W2069143585 @default.
- W4366996344 cites W2099813784 @default.
- W4366996344 cites W2157331557 @default.
- W4366996344 cites W2209610041 @default.
- W4366996344 cites W2303916163 @default.
- W4366996344 cites W2326455320 @default.
- W4366996344 cites W2470673105 @default.
- W4366996344 cites W2594142095 @default.
- W4366996344 cites W2755146079 @default.
- W4366996344 cites W2774513877 @default.
- W4366996344 cites W2791844767 @default.
- W4366996344 cites W2794343888 @default.
- W4366996344 cites W2801361534 @default.
- W4366996344 cites W2801889078 @default.
- W4366996344 cites W2896784509 @default.
- W4366996344 cites W2922459487 @default.
- W4366996344 cites W2936404407 @default.
- W4366996344 cites W2940897671 @default.
- W4366996344 cites W2942800840 @default.
- W4366996344 cites W2974233619 @default.
- W4366996344 cites W2997421965 @default.
- W4366996344 cites W3052356208 @default.
- W4366996344 cites W3080113688 @default.
- W4366996344 cites W3119850965 @default.
- W4366996344 cites W3137516072 @default.
- W4366996344 cites W3138785418 @default.
- W4366996344 cites W3195840469 @default.
- W4366996344 cites W4220892699 @default.
- W4366996344 cites W4223926961 @default.
- W4366996344 cites W4280620998 @default.
- W4366996344 cites W4287511819 @default.
- W4366996344 cites W4289341905 @default.
- W4366996344 cites W4306953826 @default.
- W4366996344 cites W4308951285 @default.
- W4366996344 cites W58609180 @default.
- W4366996344 doi "https://doi.org/10.1371/journal.pone.0284695" @default.
- W4366996344 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37098089" @default.
- W4366996344 hasPublicationYear "2023" @default.
- W4366996344 type Work @default.
- W4366996344 citedByCount "0" @default.
- W4366996344 crossrefType "journal-article" @default.
- W4366996344 hasAuthorship W4366996344A5000890501 @default.
- W4366996344 hasAuthorship W4366996344A5018541963 @default.
- W4366996344 hasAuthorship W4366996344A5029400855 @default.
- W4366996344 hasAuthorship W4366996344A5046599607 @default.
- W4366996344 hasAuthorship W4366996344A5047290587 @default.
- W4366996344 hasAuthorship W4366996344A5054983124 @default.
- W4366996344 hasAuthorship W4366996344A5057234652 @default.
- W4366996344 hasAuthorship W4366996344A5065742377 @default.
- W4366996344 hasBestOaLocation W43669963441 @default.
- W4366996344 hasConcept C105795698 @default.
- W4366996344 hasConcept C119857082 @default.
- W4366996344 hasConcept C124101348 @default.
- W4366996344 hasConcept C127413603 @default.
- W4366996344 hasConcept C139945424 @default.
- W4366996344 hasConcept C149782125 @default.
- W4366996344 hasConcept C150217764 @default.
- W4366996344 hasConcept C151730666 @default.
- W4366996344 hasConcept C154945302 @default.
- W4366996344 hasConcept C162324750 @default.
- W4366996344 hasConcept C204036174 @default.
- W4366996344 hasConcept C2780299701 @default.
- W4366996344 hasConcept C2780762169 @default.
- W4366996344 hasConcept C33923547 @default.
- W4366996344 hasConcept C41008148 @default.
- W4366996344 hasConcept C50644808 @default.
- W4366996344 hasConcept C78519656 @default.
- W4366996344 hasConcept C86803240 @default.
- W4366996344 hasConcept C88389905 @default.